Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg
Answer:
Explanation:
Since the sled plus passenger moves with constant velocity , force applied will be equal to frictional force. Let the force applied be F
a ) Frictional force = μ R = F cosφ
R = mg - F sinφ
μ(mg - F sinφ) = F cosφ
μmg = F (μsinφ+cosφ)
F = μmg / (μsinφ+cosφ)
Work done
= F cosφ x d
= μmg x cosφ x d / (μsinφ+cosφ)
b )Work done
= 0.13 x 52.3 x 9.8 cos36.7 x 21.8 / ( 0.13 sin36.7 +cos36.7)
= 1164.61 / .87946
1324.23 J
c ) work done on the sled by friction
= - (work done by force)
= - μmg x cosφ x d / (μsinφ+cosφ)
d ) work done on the sled by friction
= - 1324.23 J
Answer:
Air at higher altitude is under less pressure than air at lower altitude because there is less weight of air above it, so it expands (and cools), while air at lower altitude is under more pressure so it contracts (and heats up).
Explanation:
Hope that helped
Answer:
T = 80√3 N ≈ 139 N
W = 160 N
Explanation:
Sum of forces on B in the x direction:
∑F = ma
80 N sin 60° − T sin 30° = 0
T = 80 N sin 60° / sin 30°
T = 80√3 N
T ≈ 139 N
Sum of forces on B in the y direction:
∑F = ma
80 N cos 60° + T cos 30° − W = 0
W = 80 N cos 60° + T cos 30°
W = 40 N + 120 N
W = 160 N
Answer:
False
Explanation:
A compass can be used to determine relative direction but not absolute direction.