Answer:
<h2><em>
15.00124mmHg</em></h2>
Explanation:
Pressure is defined as the ratio of force applied to an object to its area.
Pressure = Force/Area
Given parameters
Force = 0.242N
Area = 1.21cm²
Required parameters
Pressure = 0.242/1.21
Pressure = 0.2N/cm²
Using the conversion to convert the pressure to mmHg
1N/cm² = 75.0062mmHg
0.2N/cm² = y
y = 0.2 * 75.0062
y = 15.00124mmHg
<em>Hence the pressure in mmHg is 15.00124mmHg</em>
Answer:
x₂ = 1.33 m
Explanation:
For this exercise we must use the rotational equilibrium condition, where the counterclockwise rotations are positive and the zero of the reference system is placed at the turning point on the wall
Στ = 0
W₁ x₁ - W₂ x₂ = 0
where W₁ is the weight of the woman, W₂ the weight of the table.
Let's find the distances.
Since the table is homogeneous, its center of mass coincides with its geometric center, measured at zero.
x₁ = 2.5 -1.5 = 1 m
The distance of the person is x₂ measured from the turning point, at the point where the board begins to turn the girl must be on the left side so her torque must be negative
x₂ =
let's calculate
x₂ =
x₂ = 1.33 m
Answer:
A
Explanation:
Kinetic energy must be moving. Potential energy has the ability to move but is not doing so at the moment.
A is likely the answer. But there's lots involved in that kind of motion.
B If the ball is elevated, it implies it is not moving yet. It has potential energy.
C Again, the spring is compressed. It will push something when it moves, but it is not moving yet.
D The load gun's bullet is not moving. It's still potential energy.
E. The mouse trap is set, but it is not moving. When the mouse eats the bait then it's potential energy will transform into kinetic energy.
<span>A sheet of copper could cause the object to lose the most amount of heat. Copper is an essential element and a good conductor of heat. Heat can transfer from one end of a piece of copper to the other end.</span>
Volume = l*w*h = (18.1 cm)(19.2 cm)(20.3 cm) = 7,054 cm^3.