Nona= 9, hepta= 7, hexa= 6, tetra= 4
Answer:
77 L of water can be made.
Explanation:
Molar mass of
= 32 g/mol
So, 55 g of
=
mol of
= 1.72 mol of
As hydrogen is present in excess amount therefore
is the limiting reagent.
According to balanced equation, 1 mol of
produces 2 mol of
.
So, 1.72 mol of
produce
mol of
or 3.44 mol of
.
Let's assume
gas behaves ideally at STP.
Then,
, where P, V, n, R and T represents pressure, volume, no. of moles, gas constant and temperature in kelvin scale respectively.
At STP, pressure is 1 atm and T is 273 K.
Here,
= 3.44 mol and R = 0.0821 L.atm/(mol.K)
So, 

Option (b) is correct.
Answer : The 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Explanation :
Galvanic cell : It is defined as a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy. It is also known as the voltaic cell or electrochemical cell.
In the galvanic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
We are taking the value of standard reduction potential form the standard table.
![E^0_{[Ag^{+}/Ag]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.80V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)
In this cell, the component that has lower standard reduction potential gets oxidized and that is added to the anode electrode. The second forms the cathode electrode.
The balanced two-half reactions will be,
Oxidation half reaction (Anode) : 
Reduction half reaction (Cathode) : 
Thus the overall reaction will be,

From this we conclude that, 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Hence, the 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Answer:
Forest Fire
Explanation:
Forest fire is an ecological factor over which biological processes like seed dispersal and their germination is dependent upon. Some plants germinate under high temperature underground regions of the soil which is covered by the hot soil affected by the burning by the forest fire. Some of the coniferous trees like longpole pines have hard cone which exhibit the seeds. These cones exhibit the serotonin resins which are melted by the forests fire hence fire helps in dispersal of the seeds. Other plants like Eucalyptus and Banksia are also dependent upon fire for seed dispersal.