Answer:
This process, which is the opposite of vaporization, is called condensation. As a gas condenses to a liquid, it releases the thermal energy it absorbed to become a gas. During this process, the temperature of the substance does not change. The decrease in energy changes the arrangement of particles.
Answer:It would never stop until something hit the ball, to slow it down.
Explanation:
This is so because there is no gravitational pull in space.
Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:



ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm



T₂=371.77 K= 98.62 °C
[CO] = 1 mol / 2L = 0.5 M
[
According to the equation:
and by using the ICE table:
CO(g) + H2O(g) ↔ CO2(g) + H2(g)
initial 0.5 0.5 0 0
change -X -X +X +X
Equ (0.5-X) (0.5-X) X X
when Kc = X^2 * (0.5-X)^2
by substitution:
1.845 = X^2 * (0.5-X)^2 by solving for X
∴X = 0.26
∴ [CO2] = X = 0.26
Answer: The gas generated by two antacid tablets has a smaller volume.
Explanation:
Since the antiacid is the limiting reagent, we know that the more tablets there are, the more gas there will be.
This means that there will be more gas generated by the four antiacid tablets when compared to the two antiacid tablets, which gives us that the gas generated by the two antiacid tablets has a smaller volume.