Answer:

Explanation:
given,
street light height = 13 ft
man height = 6.3 ft
speed of the man = 3.5 ft/sec



hL = H(L-x)
hL = HL-Hx


L = 1.94 x



Answer:
Time = 0.317 seconds.
Explanation:
Given the following data;
Distance = 1.65km to meters = 1.65 * 1000 = 1650 meters
We know that the speed of sound in steel is equal to 5200m/s
To find the time to hear the sound of the whistle;
Time = distance/speed
Substituting into the equation, we have
Time = 1650/5200
Time = 0.317 seconds.
Therefore, it will take him 0.317 seconds to hear the sound of the whistle.
Answer:
The answer is C.move forward rapidly until stopped.
Explanation:
50 miles an hour is a very high speed. The momentum transfer to the car at stop light will move the car forward rapidly until its brake is able to stop it.
When you look at the acronym ROY G. BIV, you get the wavelengths from longest to shortest. Since Green is in the middle of ROY G. BIV, anything to the right of it would have a shorter wavelength. You can choose in the visible range Blue, Indigo, or Violet.
<u>Answers
</u>
1) B. longitudinal.
2) B. air is cooler than the ground.
<u>Explanation
</u>
Q1
There are two categories of a wave. That is transverse and longitudinal waves. Transverse waves forms crests and troughs while longitudinal forms compressions and rarefaction as they travel. Rarefactions are regions where the wavelengths are longer than other regions.
Q2
As the ray of light moves from an optically less dense to a more dense region it bends towards the normal.
If the sound is bending away from the earth's surface, then the ground must be warmer than the air. As the sound travels it moves from optically dense medium to a less dense medium. For this reason it bends away from the normal. This can only happen when, B. air is cooler than the ground.