1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
3 years ago
7

A horizontal pipe contains water at a pressure of 110 kPa flowing with a speed of 1.4 m/s. When the pipe narrows to one half its

original diameter, what is (a) the speed and (b) the pressure of the water?
Physics
1 answer:
Pavel [41]3 years ago
4 0

Answer:

a

  v_2 =  5.6 \  m/s

b

   P_2 = 80600 \  Pa

Explanation:

From the question we are told that  

     The pressure of the water in the pipe is  P_1= 110 \  kPa  =  110 *10^{3 } \  Pa

      The speed of the water  is v_1 =  1.4 \  m/s

       The original area of the pipe is  A_1 =  \pi \frac{d^2 }{4}

       The  new area of the pipe is  A_2 = \pi *  \frac{[\frac{d}{2} ]^2}{4}  =  \pi *  \frac{\frac{d^2}{4} }{4} = \pi \frac{d^2}{16}

         

Generally the continuity equation is mathematically represented as

       A_1 *  v_1 =  A_2 * v_2

Here v_2 is the new velocity  

So

        \pi * \frac{d^2}{4}   *  1.4  = \pi * \frac{d^2}{16}   * v_2

=>     \frac{d^2}{4}   *  1.4  =  \frac{d^2}{16}   * v_2

=>    d^2    *  1.4  =  \frac{d^2}{4}   * v_2

=>    1.4  = 0.25    * v_2

=>     v_2 =  5.6 \  m/s

Generally given that the height of the original pipe and the narrower pipe are the same , then we will b making use of the  Bernoulli's equation for constant height to calculate the pressure

This is mathematically represented as

       

             P_1 + \frac{1}{2}  *  \rho *  v_1 ^2  =  P_2 + \frac{1}{2}  *  \rho *  v_2 ^2

Here \rho is the density of water with value  \rho =  1000  \  kg /m^3

             P_2 =  P_1 + \frac{1}{2} *  \rho [ v_1^2 - v_2^2 ]

=>          P_2 =  110 *10^{3} + \frac{1}{2} *  1000 *  [ 1.4 ^2 - 5.6 ^2 ]

=>          P_2 = 80600 \  Pa

You might be interested in
the speed of light in a certain medium is 0.6c. find critical angle , if the index of refraction is 1.67​
baherus [9]

Answer:

\theta_c = 36.78^o

Explanation:

The relationship between the refractive index and the critical angle is given as follows:

\eta = \frac{1}{Sin\ \theta_c} \\\\Sin\ \theta_c = \frac{1}{\eta}\\\\\theta_c = Sin^{-1}(\frac{1}{\eta} )

where,

η = refractive index = 1.67

θc = critical angle =?

Therefore,

\theta_c = Sin^{-1}(\frac{1}{1.67} )

\theta_c = 36.78^o

4 0
3 years ago
B. How can you tell where sugar enters the blood?
Korolek [52]

Answer:

Sugar can’t enter cells directly

Explanation:

So when blood sugar level rises, cells in the pancreas signal for the release of insulin into the bloodstream. The insulin attaches to the sugars and signals cells to let it enter with the attached sugar. Insulin is known as the key that unlocks cells.

I hope I helped

8 0
3 years ago
The force of attraction between a ball is F=.........×10^-¹¹
DIA [1.3K]

Answer:

4.45×10¯¹¹ N

Explanation:

From the question given above, the following data were obtained:

Mass of ball (M₁) = 4 Kg

Mass of bowling pin (M₂) = 1.5 Kg

Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²

Distance apart (r) = 3 m

Force of attraction (F) =?

The force of attraction between the ball and the bowling pin can be obtained as follow:

F = GM₁M₂ / r²

F = 6.67×10¯¹¹ × 4 × 1.5 / 3²

F = 4.002×10¯¹⁰ / 9

F = 4.45×10¯¹¹ N

Therefore, the force of attraction between the ball and the bowling pin is 4.45×10¯¹¹ N

8 0
3 years ago
A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1290 N/ms , b = 330 N/ms2 , and t is the time (in millise
denpristay [2]

Answer:

The resulting velocity of the ball after it hits the racket was of V= 51.6 m/s

Explanation:

m= 55.6 g = 0.0556 kg

t= 2.8 ms = 2.8 * 10⁻³ s

F= 1290 N/ms * t - 330 N/ms² * t²

F= 1024.8 N

F*t= m * V

V= F*t/m

V= 51.6 m/s

6 0
3 years ago
What is the pendulum length whose period is 2.0s ?
Mashutka [201]
Formula\ for\ period:\\\ T=2 \pi \sqrt{\frac{L}{g}}\\\ g-gravity=9,8 \frac{m}{s^2} ,\ L-pendulum \ length \\\\ \frac{T}{2 \pi } = \sqrt{ \frac{L}{g} }|square\\\\ \frac{T^2}{2 \pi } = \frac{L}{g} \\\\\ \frac{T^2}{2 \pi }*g=L\\\\ L= \frac{2^2}{2*3,14 }*9,8= \frac{39,2}{6,28} =6,24mT=2 \pi   \sqrt{\frac{L}{g}} \\
 \frac{T}{2 \pi } = \sqrt{ \frac{L}{g} }|square\\
 \frac{T^2}{2 \pi }  = \frac{L}{g} \\
 \frac{T^2}{2 \pi }*g=L\\
L= \frac{2^2}{2*3,14 }*9,8= \frac{39,2}{6,28} =6,24m

7 0
3 years ago
Other questions:
  • Water makes a good coolant because it has a ____.
    8·2 answers
  • An object of mass 50 kg accelerates from a velocity of 2.0 m/s to a velocity of 10 m/s in the same direction in 4.0 s.
    14·1 answer
  • A 12-kg projectile is launched with an initial vertical speed of 20 m/s. It rises to a maximum height of 18 m above the launch p
    11·1 answer
  • A block of gelatin is 120mm by 120mm by 40mm whrn unstressed. A force of 49N is applied tangentially to the upper surface causin
    5·1 answer
  • If white light shines on an object and the red, orange, green, blue and purple light is absorbed. What color does your eye see?
    12·2 answers
  • Describe the frequency and wavelength range of radio waves
    14·1 answer
  • An elevator car has a mass of 750 kg, and its three passengers have a combined mass of 135 kg. If the elevator and its passenger
    9·1 answer
  • Which of the following best describes how a transformer works?
    12·1 answer
  • What is a wave in sound and light
    9·2 answers
  • Question 1 of 25<br> In the covalent compound CO₂, the Greek prefix used to represent the anion is
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!