Answer:
Energy transforms from Potential energy to (Kinetic Energy+heat+air drag) to potential energy. The bob comes to rest as it loses its energy due to the influence of the factors from the surroundings. The bob's energy is lost eventually and no, this happening is not a violation of the law of energy conservation.
Explanation:
- For the illustration please refer to the figure attached herewith.
- The bob is given some energy in the form of potential energy at the beginning and after it is released it swings back and forth interchanging energy between the potential to kinetic and keeping the total of its energy constant.
- Only in the ideal conditions (no friction loss at the pivotal point, no air drag) the conditions described just above happen to exist. Else, where all the resistances are available: in the practical scenario, some energy gets dissipated to the environment via these factors making the total energy no longer a constant.
- As a result of this, both its potential and kinetic energy also get reduced illustrating a gradual reduction of the height the bob would rise and the speed it would swing with.
- The energy distribution, in this case, happens to be like this: Bob's total energy - lost energy = potential energy + kinetic energy.
- This lost energy is not a miracle it is nature that some energy is transformed into some other form hence this happening is not a violation of the law of energy conservation.
- In that case, energy is conserved between the bob and the environment.
#SPJ4
Answer:
Speed and direction affect pitch.
The answer is B thank me later !
Answer:

Explanation:
It is given that,
A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m
We need to find the magnetic vector of the wave at the point P at that instant.
The relation between electric field and magnetic field is given by :

c is speed of light
B is magnetic field

So, the magnetic vector at point P at that instant is
.