Answer:
A B C D E MIGHT BE UR ANSWER
Answer:
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm)
Step-by-step explanation:
Our sample size is 11.
The first step to solve this problem is finding our degrees of freedom, that is, the sample size subtracted by 1. So
.
Then, we need to subtract one by the confidence level and divide by 2. So:
Now, we need our answers from both steps above to find a value T in the t-distribution table. So, with 10 and 0.025 in the two-sided t-distribution table, we have
Now, we find the standard deviation of the sample. This is the division of the standard deviation by the square root of the sample size. So
Now, we multiply T and s
cm
For the upper end of the interval, we add the sample mean and M. So the upper end of the interval here is
cm
So
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm).
Answer:
i would say B.. sorry of its not the right one..
Step-by-step explanation:
Umbilical
point.
An
umbilic point, likewise called just an umbilic, is a point on a surface at
which the arch is the same toward any path.
In
the differential geometry of surfaces in three measurements, umbilics or
umbilical focuses are focuses on a surface that are locally round. At such
focuses the ordinary ebbs and flows every which way are equivalent,
consequently, both primary ebbs and flows are equivalent, and each digression
vector is a chief heading. The name "umbilic" originates from the
Latin umbilicus - navel.
<span>Umbilic
focuses for the most part happen as confined focuses in the circular area of
the surface; that is, the place the Gaussian ebb and flow is sure. For surfaces
with family 0, e.g. an ellipsoid, there must be no less than four umbilics, an
outcome of the Poincaré–Hopf hypothesis. An ellipsoid of unrest has just two
umbilics.</span>
Answer:
(-3,-1)
Step-by-step explanation:
When you graph it on a graphing paper, you can see that the graph touches it but barely