Because the there’s not enough inertia to keep the bouncy ball going at the same rate
Answer:
Half-reactions:
Cr³⁺ + 1e⁻ → Cr²⁺; Zn → Zn²⁺ + 2e⁻
Net ionic equation:
2Cr³⁺ + Zn → 2Cr²⁺ + Zn²⁺
Explanation:
The Cr³⁺ is reduced to Cr²⁺:
<h3>
Cr³⁺ + 1e⁻ → Cr²⁺ -Half-reaction 1-</h3>
Zn is oxidized to Zn²⁺:
<h3>
Zn → Zn²⁺ + 2e⁻ -Half-reaction 2-</h3>
Twice the reduction of Cr:
2Cr³⁺ + 2e⁻ → 2Cr²⁺
Now this reaction + Oxidation of Zn:
2Cr³⁺ + 2e⁻ + Zn → 2Cr²⁺ + Zn²⁺ + 2e⁻
<h3>2Cr³⁺ + Zn → 2Cr²⁺ + Zn²⁺ - Net ionic equation</h3>
Explanation:
a) The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 45 g
= mass of coffee = 180 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![45 g\times 0.80J/g^oC\times (T_{final}-24^oC)=-[180 g\times 4.186J/g^oC\times (T_{final}-83^oC)]](https://tex.z-dn.net/?f=45%20g%5Ctimes%200.80J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-24%5EoC%29%3D-%5B180%20g%5Ctimes%204.186J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-83%5EoC%29%5D)

80.30 °C is the final temperature.
b) Energy flows from higher temperature to lower temperature.Whenever two bodies with different energies and temperature come in contact. And the resulting temperature of both bodies will less then the body with high temperature and will be more then the body with lower temperature.
So, is our final temperature of both aluminium and coffee that is 80°C less than initial temperature of coffee and more than the initial temperature of the aluminum.
Answer:
The answer is A.
Explanation:
Neutrons and protons are located in the dense middle of the atom called the nucleus, and electrons are located on the electron cloud located outside of the nucleus.