The equilibrium constant expression for this reaction that takes place in water and involve ions can be written as K= [H_3 O^+ ][OH^- ]/([H_2 O] ^2 ). But the concentration of undissociated water, H_2 O is much larger than the concentration of the ions that is essentially remains constant. Therefore, we can include it in the equilibrium constant. The resulting new equilibrium constant can be written: K_W= [H_3 O^+ ][OH^- ].
1. NaCl
2. CaO
3. KOH
4. MgS
5. CuCO3
6. Al2O3
7. Fe2O3
8. Na2CO3
9. AlHO3
10. (NH4)3N
11. Zn3N2
12. MgCO3
All numbers are subscripts.
Answer:
A. Mafic; iron and/or magnesium
Explanation:
Let's find the answer by naming some minerals and their chemistry.
Mafic minerals are dark-colored whereas felsic minerals are light-colored, thats way mafic rocks are dark-colored because they are mainly composed by mafic minerals and the other way around for felsic rocks.
But remember that mafic minerals as amphiboles, pyroxenes or biotites, involve in their chemical structure iron and/or magnesium. Although calcium and sodium can be incorporated in amphiboles and clinopyroxenes, they are not involved in orthopyroxenes and biotites. On the other hand, although potassium is involved in biotite and in some extent in amphiboles, this element is not involved in pyroxenes.
So in conclusion, mafic minerals are usually dark-colored because they involve iron and/or magnesium in their chemical structures.
I searched for complete question (as your question is missing with structure) and found the structure of compound attached below.
Answer: The compound can
neither act as a Hydrogen Bond Donor
nor act as a Hydrogen Bond Acceptor.
Explanation: For two compounds to build Hydrogen Bond Interactions it is compulsory that they must contain Hydrogen atoms which are directly attached to most electronegative atoms like
Fluorine,
Oxygen and
Nitrogen.
As the given compound is
2-Butene (a non polar hydrocarbon), it lacks partial positive Hydrogen (which can act as Hydrogen Bond Donor) and a most electronegative element (F, O or N) which can act as Hydrogen Bond Acceptor. Therefore, this compound will not generate any Hydrogen Bonding with water molecules and will remain immiscible in it.