Answer:
The concentration of the most dilute solution is 0.016M.
Explanation:
First, a solution is prepared and then it undergoes two subsequent dilutions. Let us calculate initial concentration:
![[Na_{2}SO_{4}]=\frac{moles(Na_{2}SO_{4})}{liters(solution)} =\frac{mass((Na_{2}SO_{4}))}{molarmass(moles(Na_{2}SO_{4}) \times 0.100L)} =\frac{2.5316g}{142g/mol\times 0.100L } =0.178M](https://tex.z-dn.net/?f=%5BNa_%7B2%7DSO_%7B4%7D%5D%3D%5Cfrac%7Bmoles%28Na_%7B2%7DSO_%7B4%7D%29%7D%7Bliters%28solution%29%7D%20%3D%5Cfrac%7Bmass%28%28Na_%7B2%7DSO_%7B4%7D%29%29%7D%7Bmolarmass%28moles%28Na_%7B2%7DSO_%7B4%7D%29%20%5Ctimes%200.100L%29%7D%20%3D%5Cfrac%7B2.5316g%7D%7B142g%2Fmol%5Ctimes%200.100L%20%7D%20%3D0.178M)
<u>First dilution</u>
We can use the dilution rule:
C₁ x V₁ = C₂ x V₂
where
Ci are the concentrations
Vi are the volumes
1 and 2 refer to initial and final state, respectively.
In the first dilution,
C₁ = 0.178 M
V₁ = 15 mL
C₂ = unknown
V₂ = 50 mL
Then,

<u>Second dilution</u>
C₁ = 0.053 M
V₁ = 15 mL
C₂ = unknown
V₂ = 50 mL
Then,

Answer:
There are
Explanation:
There are 10 elements in CH3CH2COONa.
Answer:
By using magnet.
Explanation:
Put sand and zinc in the bowl.
Take a magnet an bring it close to the bowl.
The zinc from the sand will be attracted towards the magnet.
In this way it will be separated.
Optimization helps you make better choices when you have all the data, and simulation helps you understand the possible outcomes when you don’t. Frontline Solvers enable you to combine these analytic methods, so you can make better choices for decisions you do control, taking into account the range of potential outcomes for factors you don’t control.