<h3>
Answer:</h3>
Momentum of the given body will be : 75000 Kg m/s
<h3>
Explanation:</h3>
According to Newton's first law of motion, all bodies continue to be in the state of rest or motion unless an external force is applied on the body. We can use this in the case of momentum also
The formula of momentum is given by :

Here, we are given the mass of the body ( m ) as 3000kg and the velocity of the body ( v ) as 25 m/s. On putting the values in the formula:

Momentum is associated with the mass of the moving body and can be defined as the quantity of motion measured as a product of mass and velocity.
Answer: the frequency is every 27.322 days
<h2>The work done = - 2 x 10⁴ J</h2>
Explanation:
In the first case , the volume is kept constant and pressure varies .
In isothermal process , the work done
W₁ = V x ΔP
here V is the volume of gas and ΔP is the change in pressure
Thus W₁ = 0
Because there is no change in volume , therefore displacement is zero .
In second case pressure is constant , but volume changes
Thus W₂ = P x ΔV
here P is the pressure and ΔV is the change in volume
Therefore W₂ = 4 x 10⁵ x 5 x 10⁻² = 2 x 10⁴ J
The total work done W = - 2 x 10⁴ J
Because the work done in compression is negative .
<h2>Right answer: Comets have very elliptical orbits that usually take them far beyond the orbit of Pluto, but also take them closer to the Sun than Earth</h2>
Comets are celestial bodies constituted by ice, dust and rocks that orbit around the Sun, after having been altered by the Oort cloud; following different trajectories that can be <u>highly eccentric elliptical</u><u> </u>(periodic trajectories), parabolic or hyperbolic.
One of the main characteristics of a comet is that it travels quite fast, on its way around the Sun and has a long tail. It should be noted that the tails of comets always go in the opposite direction to the Sun (due to the radiation pressure of sunlight).
Therefore, the correct option is C.
Answer:
Therefore the correct statement is B.
Explanation:
In the interference and diffraction phenomena, the natural wave of electromagnetic radiation must be taken into account, the wave front that advances towards the slit can be considered as when it reaches it behaves like a series of wave emitters, each slightly out of phase from the previous one, following the Huygens principle that states that each point is compiled as a source of secondary waves.
The sum of all these waves results in the diffraction curve of the slit that has the shape
I = Io sin² θ /θ²
Where the angle is a function of the wavelength and the width of the slit.
From the above, the interference phenomenon can be treated as the sum of two diffraction phenomena displaced a distance equal to the separation of the slits (d)
Therefore the correct statement is B