Answer:
6.03 mV
Explanation:
length of solenoid, L = 2 m, N = 12000, di/dt = 40 A/s,
Magnetic field due to solenoid
B = μ0 n i = μ0 N i / L
dB/dt = μ0 N / L x di / dt
dB /dt = (4 x 3.14 x 10^-7 x 12000 x 40) / 2 = 0.3 T/s
Induced emf, e = rate of change of magnetic flux
e = dΦ / dt = A x dB / dt
e = 3.14 x 0.08 x 0.08 x 0.3 = 6.03 x 10^-3 V = 6.03 mV
<h2>
Weight of astronaut 2450 miles above the Earth is 80.38 pounds</h2>
Explanation:
Given that gravitational force, F, between an object and the Earth is inversely proportional to the square of the distance from the object and the center of the Earth.

Where F is gravitational force between an object and the Earth, r is the distance from the object and the center of the Earth and k is a constant.
Radius of Earth = 4000 miles
In case 1 an astronaut weighs 209 pounds on the surface of the Earth,

Now we need to find weight of astronaut 2450 miles above the Earth
r = 4000 + 2450 = 6450 miles

Weight of astronaut 2450 miles above the Earth is 80.38 pounds
Answer: I think your answer would be true.
Answer:
T = 3990 N
Explanation:
The free body diagram for the elevator consists of a tension force pointing up, and its weight pointing down. So the elevator's net force is:
F = T - 2940N
ad at the same time, using Newton's second law, we have that this net force should equal the elevator's mass (300 kg) times its acceleration (a):
T - 2940N = 300kg (3.5m/s^2)
then
T = 2940 N + 1050 N
T = 3990 N