It would be: Speed = Distance / Time
Answer:
B = 0.546 T, F = 2.59 10⁻¹² N
Explanation:
The magnetic force is
F = q v x B
We can calculate the magnitude of the force and find the direction by the right hand rule
F = q v B sin θ
Let's use Newton's second law
F = m a
Acceleration is centripetal
a = v² / r
We substitute
q v B sin θ = m v² / r
The angle between the field and the radius of the circle is 90º so sin 90 = 1
q B = m v / r
B = m v / q r
Let's calculate ’
B = 1.67 10⁻²⁷ 2.97 10⁷ / (1.60 10⁻¹⁹ 0.568)
B = 0.546 T
The foce is
F = q v B
F = 1.60 10⁻¹⁹ 2.97 10⁷ 0.546
F = 2.59 10⁻¹² N
Answer:
Option C.
Impulse = mass × change in velocity
Explanation:
Impulse is defined by the following the following formula:
Impulse = force (F) × time (t)
Impulse = Ft
From Newton's second law of motion,
Force = change in momentum /time
Cross multiply
Force × time = change in momentum
Recall:
Impulse = Force × time
Thus,
Impulse = change in momentum
Recall:
Momentum = mass x velocity
Momentum = mv
Chang in momentum = mass × change in velocity
Change in momentum = mΔv
Thus,
Impulse = change in momentum
Impulse = mass × change in velocity
At 1.70 atm, a gas sample occupies 4.25 liters. If the pressure in the gas increases to 2.40 atm, what will the new volume be?
Answer:
3.01L
Explanation:
Given parameters:
Initial pressure, P1 = 1.7atm
Initial volume, V1 = 4.25L
Final pressure, P2 = 2.4atm
Unknown:
Final or new volume, V2 = ?
Solution:
To solve this problem, we use Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes, if the temperature is constant".
P1 V1 = P2 V2
P1 is the initial pressure
V1 is the initial volume
P2 final pressure
V2 final volume
1.7 x 4.25 = 2.4 x V2
V2 = 3.01L