The radioisotope will take 219 days to decay from 28 g to 0.875 g.
Explanation:
Any radioactive isotope is tend to decay with time. So the rate of decay of the radioactive isotopes is termed as disintegration constant. Since, the initial mass of the radioactive isotope is given along with the reducing mass. In order to determine the time required to reduce the mass of the radioisotope from 28 g to 0.875 g, first the disintegration constant is need to be determined. The disintegration constant can be obtained from half life time of the isotope. As half life time is the measure of time required to reduce half of the concentration of the isotope.
Half life time = 0.6932/disintegration constant
44 = 0.6932/λ
λ = 0.6932/44=0.0158
So, with this values of disintegration constant, initial mass and final mass, the time required to reduce from initial to final mass can be obtained using law of disintegration constant as follows.
N = Noe^(-λt)

Thus, the radioisotope will take 219 days to decay from 28 g to 0.875 g.
<em>1 troy ounce is equal to 0.0685714 pound.</em>
<em>1 pound is equal to 14.5833 troy ounces.</em>
14.5833 x 1795 = 26177.0235
1 pound of gold is approximately $26177.03
<u>Hopefully that helped! :)</u>
Answer is White Granite stone.
When an electron passes through the magnetic field of a horseshoe magnet, the electron's direction is changed.
Path of an electron in a magnetic field
The force (F) on wire of length L carrying a current I in a magnetic field of strength B is given by the equation:
F = BIL
But Q = It and since Q = e for an electron and v = L/t you can show that :
Magnetic force on an electron = BIL = B[e/t][vt] = Bev where v is the electron velocity
In a magnetic field the force is always at right angles to the motion of the electron (Fleming's left hand rule) and so the resulting path of the electron is circular.
Therefore :
Magnetic force = Bev = mv2/r = centripetal force
v = [Ber]/m
and so you can see from these equations that as the electron slows down the radius of its orbit decreases.
If the electron enters the field at an angle to the field direction the resulting path of the electron (or indeed any charged particle) will be helical. Such motion occurs above the poles of the Earth where charges particles from the Sun spiral through the Earth's field to produce the aurorae.
To learn more about electron : brainly.com/question/860094
#SPJ4
Answer:
v = 450 m/s
Explanation:
Given data:
Frequency = 75 Hz
Wavelength = 6 m
Velocity = ?
Solution:
Velocity is the product of frequency and wavelength.
v = f × λ
v = 75 Hz × 6 m
Hz = s⁻¹
v = 75 s⁻¹ × 6 m
v = 450 m/s