The balanced equation for the above neutralisation reaction is as follows;
Ca(OH)₂ + 2HCl ----> CaCl₂ + 2H₂O
Stoichiometry of Ca(OH)₂ to HCl is 1:2
number of Ca(OH)₂ moles reacted - 0.250 mol/L x 20.0 x 10⁻³ L = 5.00 x 10⁻³ mol
according to molar ratio of 1:2
number of HCl moles required = 2 x number of Ca(OH)₂ moles reacted
number of HCl moles = 5.00 x 10⁻³ x 2 = 10.0 x 10⁻³ mol
molarity of HCl solution - 0.250 M
there are 0.250 mol in volume of 1 L
therefore 10.0 x 10⁻³ mol in - 10.0 x 10⁻³ mol / 0.250 mol/L = 40.0 mL
40.0 mL of 0.250 M HCl is required
As far as I know, the answer is B (breaking a rock)
21 kg x [(3 x 35.45)/(12.01 + 19.00 + (3 x 35.45))] =
21 kg x (106.35/137.36) = 16.3 kg of chlorine
You just multiply the weight of the material by the fraction of chlorine (by weight). The others are done the same way
12cm cubed.
Formula is length x width x height and in this case it would be 2x3x2 which equals 23
Remember....
mass number= atomic number + number of neutrons
If the mass number is 19 and the atomic number is 9, then the number of neutrons is 19-9 which is 10.