1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuri [45]
3 years ago
8

Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. ????????????H(????) → ????????+(?????

???) + ????H −(????????) + x1????????
Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of hydrogen chloride to form water and an aqueous solution of sodium chloride. ????????????H(????) + H +(????????) + ????????−(????????) → H2????(????) + ????????+(????????) + ????????−(????????) + x2????????
Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of hydrogen chloride to form water and an aqueous solution of sodium chloride. ????????+(????????) + ????H −(????????) + H +(????????) + ????????−(????????) → H2????(????) + ????????+(????????) + ????????−(????????) + x3????J
Procedure Reaction
1 a. In the glassware menu, take out a 50 mL graduated cylinder and a foam cup. From the tools menu, take out the scale. From the solutions stockroom, move the distilled water and solid NaOH onto the workbench.
b. Transfer 50.0 mL of water to the foam cup. To do this, drag the carboy of water onto the graduated cylinder. (Before you release the mouse button, the cursor will show a "plus sign" to indicate that it is the recipient). A transfer textbar will appear, enter "50.0" mL and click on pour. (You will notice that the graduated cylinder now reads 50.0 mL).
c. Weigh about 1 gram of solid sodium hydroxide pellets, NaOH(s), directly into the foam cup and record its mass to the nearest 0.01 gram. To do this, place the foam cup on the balance so it registers a mass, then click the "Tare" button. Drag the NaOH bottle onto the foam cup. (When you release the mouse, the bottle will be tipped to show that it is in the pour mode). Next, type "1.00" grams into the transfer bar and then click pour. Note that the balance now reads the mass of the transferred NaOH. You may now take the cup off of the scale.
d. Click on the graduated cylinder, record its temperature and then drag it onto the foam cup. (When you release the mouse, the graduated cylinder will be tipped to show that it is in pour mode.) Enter "50.0" mL in the transfer bar and then click pour. Record the highest temperature. e. Remove the foam cup and graduated cylinder from the workbench. (Right click on the item and select "remove.")
Reaction 2
a. Take the 0.5 M HCl from the strong acids cabinet and a fresh foam cup and a fresh 50 mL graduated cylinder from the glassware menu and place them on the workbench. The procedure for Reaction 2 is the same as for Reaction 1 except that 50.0 mL of 0.50 M hydrochloric acid solution is used in place of the water. After measuring 50.0 mL of the HCl solution into the graduated cylinder, proceed as before with steps b-e of the procedure for Reaction 1.
Reaction 3
a. Take out a 25 mL graduated cylinder, a fresh foam cup, the 1.0 M HCl and the 1.0 M NaOH. (If you are running out of room on the workbench, you may remove the previously used chemicals.) Use the graduated cylinder to measure and transfer 25.0 mL of 1.0 M HCl into the foam cup. Pour an equal volume of 1.0 M sodium hydroxide solution into a clean graduated cylinder.
b. Record the temperature of each solution to the nearest 0.1 oC. Pour the sodium hydroxide solution into the foam cup and record the highest temperature obtained during the reaction.
Data and Analysis
Reaction 1Reaction 2Reaction 3
Mass of solution* (g) 1.03g 1.03g
Initial temperature(°C) 25oC 25OC 25OC
Maximum temperature (°C) 30.3oC 37oC 31.7oC
Temperature change (∆T)
Heat energy q (kJ)
Moles of NaOH
Molar heat of reaction (-q/mol) also known as Enthalpy change,
DH (kJ/mol)
Chemistry
1 answer:
Dennis_Churaev [7]3 years ago
5 0
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)

Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/
You might be interested in
Which of the following is the most likely sign that a chemical change has happened?
Dovator [93]

Answer:

<em>The correct option is B) two liquids are mixed at room temperature and a gas forms.</em>

Explanation:

A chemical change can be described as a change which results in the formation of a new substance by the reactants. In the option B, two liquids react  to form a new product which is a gas. Hence, it is an example of chemical change.

Other options,like option D, is not a chemical change as by crushing a solid no new product is formed. Option C is also not correct because as when salt dissolves in water, no new product is made.  

4 0
3 years ago
Bakit tinawag na pacific ring of fire ang mga bansa sa timog silangan asya at pasipiko? A. dahil sa aktibong bulkan B.dahil sa l
valkas [14]

Answer:

D

Explanation:

Sinagotan ko na to pero nakalimutan ko ans.

4 0
3 years ago
How many moles of H2 will be produced from 100 moles of water?2 H2O → 2 H2 + O2
ki77a [65]

In order to answer this question, we are going to look at the molar ratio between H2O and H2, we can see that by analyzing the numbers in front of the compounds, and we can see that the molar ratio is 2:2, this means that for every 2 moles of water decomposing, we will end up with 2 moles of H2 being produced, therefore the same amount of moles for H2O will be the same amount of moles of H2, which means that if we have 100 moles of H2O being decomposed, we will also have 100 moles of H2 being produced.

7 0
1 year ago
An atom that has a negative four charge will have one of the following?
expeople1 [14]
B. An equal amount of protons and electrons
8 0
4 years ago
Read 2 more answers
Give the complete ionic equation for the reaction (if any) that occurs when aqueous solutions of MgSO3 and HI are mixed. Give th
Sunny_sXe [5.5K]

Answer:

Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)

Explanation:

<em>Give the complete ionic equation for the reaction (if any) that occurs when aqueous solutions of MgSO₃ and HI are mixed.</em>

When MgSO₃ reacts with HI they experience a double displacement reaction, in which the cations and anions of each compound are exchanged, forming H₂SO₃ and MgI₂. At the same time, H₂SO₃ tends to decompose to H₂O and SO₂. The complete molecular equation is:

MgSO₃(aq) + 2 HI(aq) ⇄ MgI₂(aq) + H₂O(l) + SO₂(g)

In the complete ionic equation, species with ionic bonds dissociate into ions.

Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)

6 0
3 years ago
Other questions:
  • Which of the following could produce an ocean?
    7·1 answer
  • Describe how an acidic solution forms when HCI is mixed in water
    8·1 answer
  • Is there any evidence that methanol forms ions either in the pure state or when dissolved in water?
    10·1 answer
  • What is fabric paint used for?
    7·2 answers
  • Ammonia (NH3) breaks down into nitrogen and water by: 4NH3 + 3O2 &gt; 2N2 + 6H2O. How many miles of water will be produced if 12
    8·1 answer
  • What is the speed of a jet plane that flies 78500 km in 10.5 hours (in km/hr)?
    9·1 answer
  • Blank moles of carbon dioxide are required to make 7.2 moles of glucose. A plant using 618 grams of carbon dioxide and plenty of
    8·1 answer
  • Which best describes the octet rule? (*hint- octet rule relates to
    14·1 answer
  • H2 + O2 -&gt; 2H2O <br> balanced or unbalanced pls help
    13·1 answer
  • What is the molarity of a solution that has 26 moles of nacl in 2. 7 l of water?.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!