Freezing, condensation, Deposition.
Answer:
K₂Cr₂O₇(s) ⇒ 2 K⁺(aq) + Cr₂O₇²⁻(aq)
Explanation:
Potassium dichromate (K₂Cr₂O₇) is a strong electrolyte, that is, when dissolved in water (the medium), it dissociates in cation potassium (K⁺) and anion dichromate (Cr₂O₇²⁻). The balanced dissociation equation is:
K₂Cr₂O₇(s) ⇒ 2 K⁺(aq) + Cr₂O₇²⁻(aq)
Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.
The best way to determine the number of atoms of arsenic in the sample will be to multiply 2.3 by Avagadro's number.
This is because Avagadro's number is the number of particles one mole of any substance has, and its value is 6.02 x 10²³
If the number of moles of a substance are known, then multiplying by Avagadro's number will give the number of particles. In this case, this is 1.38 x 10²⁴.
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.