Answer:
It should be 1 g/cm3. Hope this helpd!
Answer:
Water moves from the ground or oceans into the atmosphere through a process called evaporation. It's a process that happens on a molecular level when the molecules of water are really energized and rise into the air. Now you've got water in the air and water on land. Organisms all over the Earth need water to survive.
Explanation:
The answer is (3) Cu2O. Copper (I) has an oxidation state of +1 (that's what the "I" indicates). You can also think of this as copper (I) having a charge of +1. Oxygen has an oxidation state of -2 (that's just a rule you have to know), and you can think of it as oxygen having a charge of -2. You need oxidation numbers in a neutral compound to add up to 0 (or charges in a neutral compond to add up to 0), so you need two Cu to balance the O, which is Cu2O.
Answer:
How do you find the density of a liquid experiment?
To measure the density of a liquid you do the same thing you would for a solid. Mass the fluid, find its volume, and divide mass by volume. To mass the fluid, weigh it in a container, pour it out, weigh the empty container, and subtract the mass of the empty container from the full container.
Answer:
Explanation:
1) Chemical formula of sodium carbonate: <em>Na₂CO₃</em>
2) Ratio of carbon atoms:
- The number of atoms of C in the unit formula Na₂CO₃ is the subscript for the atom, which is 1 (since it is not written).
Hence, the ratio is 1 C atom / 1 Na₂CO₃ unit formula.
This is, there is 1 atom of carbon per each unit formula of sodium carbonate.
3) Calculate the number of moles in 1.773 × 10⁷ carbon atoms
- Divide by Avogadro's number: 6.022 × 10²³ atoms / mol
- number C moles = 1.773 × 10⁷ atoms / (6.022 × 10²³ atoms/mol)
- number C moles = 2.941 × 10⁻¹⁷ mol
Since, the ratio is 1: 1, the number of moles of sodium carbonate is the same number of moles of carbon atoms.