Explanation:
Lithium diisopropylamide (LDA) is used in many organic synthesis and is a strong base. It is prepared by the acid base reaction of N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) and butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ).
The equation is show below as:
[(CH₃)₂CH]₂NH + Li⁺⁻CH₂CH₂CH₂CH₃ ⇒ [(CH₃)₂CH]₂N⁻Li⁺ + CH₃CH₂CH₂CH₃
N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) is a weaker acid and hence, LDA ( [(CH₃)₂CH]₂N⁻Li⁺ ) is stronger base. (Weaker acid has stronger conjugate base)
Butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ) is a very strong base and hence, butane ( CH₃CH₂CH₂CH₃ ) is a very weak acid. (Strong base has weaker conjugate acid)
The semifluid or hot fluid substance within or below the crust of the Earth from which lava and other igneous rock are produced by cooling is known as magma.
The temperature and pressure elevate with depth, finally reaching to a level wherein the strongest rock is melted, transforming into magma. When the magma comes into contact with water, it instantly gets transformed into a rock, that is, the outside solidifies briskly, and the inside of it gets cold.
This problem is providing the chemical reaction whereby barium nitride reacts with water to produce barium hydroxide and ammonia, so the number of moles of barium nitride are required in order to produce 8.3 moles of ammonia. It asks for us to evaluate the student's setup, so we conclude the answer is C. "1 mol of NH3 should be replaced with 2 mol of NH3", according to:
<h3>Mole ratios:</h3>
In chemistry, stoichiometric calculations are used to figure out the moles or mass of a substance, given information about another one in the reaction. In this case, for the given chemical equation:

We evidence a 1:2 mole ratio of barium nitride to ammonia, for that reason, the student's setup:

Is incorrect, because the ammonia must be accompanied by a 2 rather than the 1 it is given there:

Thereby, the correct answer is C. "1 mol of NH3 should be replaced with 2 mol of NH3"
Learn more about mole ratios: brainly.com/question/15288923