Answer:
I'm not sure if your asking about a A, B, C, D question but, as far as I can tell this is what I know
Explanation:
(:Comparing:) Heterotrophs occupy the second and third levels in a food chain, a sequence of organisms that provide energy and nutrients for other organisms. ... Herbivores—organisms that eat plants—occupy the second level. Carnivores (organisms that eat meat) and omnivores (organisms that eat plants and meat) occupy the third level.
(:Contrasting:) Examples include plants, algae, and some types of bacteria. Heterotrophs are known as consumers because they consume producers or other consumers. ... Herbivores—organisms that eat plants—occupy the second level. Carnivores (organisms that eat meat) and omnivores (organisms that eat plants and meat) occupy the third level.
Hope this helps.
D
Low-pressure systems are associated with clouds and precipitation that minimize temperature changes throughout the day, whereas high-pressure systems normally associate with dry weather and mostly clear skies with larger diurnal temperature changes due to greater radiation at night and greater sunshine during the day.
Answer:
the dendrites, the cell body (also called the "soma"), the axon and the axon terminal
Explanation:
An example are our arms are similar to other s
Answer:
Surface area to volume ratio, in simple means the size of surface area to the volume of substance that can pass through it at a particular time.
Amoeba and some bacterias are flat and have large surface area to volume ratio. So the diffusion rate is very high due to large surface area.
Where as humans have small surface area: volume so diffusion is very slow or does not take place at all.
Explanation:
As the ratio gets smaller, it takes longer for items to diffuse.
Explanation:
When the cell increases in size, the volume increases faster than the surface area, because volume is cubed where surface area is squared.
When there is more volume and less surface area, diffusion takes longer and is less effective. This is because there is a greater area that needs to receive the substance being diffused, but less area for that substance to actually enter the cell.
this is actually why cells divide. When they become too large and it takes too long for them to transport materials across the cell, they lose efficiency and divide in half to raise the surface area to volume ratio.
I HOPE TGIS HELPS PKEASE MARK ME AS BRAINLIEST