1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
3 years ago
12

Twice the smaller of two numbers is one half of the large number. The larger number exceeds three times the smaller number by 10

. Find the large number.
Mathematics
1 answer:
dedylja [7]3 years ago
7 0

Answer:

idk

Step-by-step explanation:


You might be interested in
In a study of the accuracy of fast food drive-through orders, McDonald’s had 33 orders that were not accurate among 362 orders o
melomori [17]

Answer:

A. We need to conduct a hypothesis in order to test the claim that the true proportion of inaccurate orders p is 0.1.

B. Null hypothesis:p=0.1  

Alternative hypothesis:p \neq 0.1  

C. z=\frac{0.0912 -0.1}{\sqrt{\frac{0.1(1-0.1)}{362}}}=-0.558  

D. z_{\alpha/2}=-1.96  z_{1-\alpha/2}=1.96

E. Fail to the reject the null hypothesis

F. So the p value obtained was a very high value and using the significance level given \alpha=0.05 we have p_v>\alpha so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the true proportion of inaccurate orders is not significantly different from 0.1.  

Step-by-step explanation:

Data given and notation

n=362 represent the random sample taken

X=33 represent the number of orders not accurate

\hat p=\frac{33}{363}=0.0912 estimated proportion of orders not accurate

p_o=0.10 is the value that we want to test

\alpha=0.05 represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

p_v represent the p value (variable of interest)  

A: Write the claim as a mathematical statement involving the population proportion p

We need to conduct a hypothesis in order to test the claim that the true proportion of inaccurate orders p is 0.1.

B: State the null (H0) and alternative (H1) hypotheses

Null hypothesis:p=0.1  

Alternative hypothesis:p \neq 0.1  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}} (1)  

The One-Sample Proportion Test is used to assess whether a population proportion \hat p is significantly different from a hypothesized value p_o.

C: Find the test statistic

Since we have all the info required we can replace in formula (1) like this:  

z=\frac{0.0912 -0.1}{\sqrt{\frac{0.1(1-0.1)}{362}}}=-0.558  

D: Find the critical value(s)

Since is a bilateral test we have two critical values. We need to look on the normal standard distribution a quantile that accumulates 0.025 of the area on each tail. And for this case we have:

z_{\alpha/2}=-1.96  z_{1-\alpha/2}=1.96

P value

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided \alpha=0.05. The next step would be calculate the p value for this test.  

Since is a bilateral test the p value would be:  

p_v =2*P(z  

E: Would you Reject or Fail to Reject the null (H0) hypothesis.

Fail to the reject the null hypothesis

F: Write the conclusion of the test.

So the p value obtained was a very high value and using the significance level given \alpha=0.05 we have p_v>\alpha so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the true proportion of inaccurate orders is not significantly different from 0.1.  

6 0
3 years ago
The graph shown can be used to solve which of these systems of equations?
mrs_skeptik [129]

Answer: It is B

Step-by-step explanation:

Just took the test

7 0
3 years ago
Which sampling would be appropriate to survey 120,000 people?
kipiarov [429]

Answer: Id say b

Step-by-step explanation: a would be too high and a bit too detailed. Whereas c and d will be inaccurate.

8 0
3 years ago
Which situation is represented by the equation?
zaharov [31]
<span>Jill has $30 and Maddie has $60. Jill saves $4 per week and Maddie saves $2 per week. How long will it be before Jill and Maddie have the same amount of money?</span>
4 0
3 years ago
Read 2 more answers
Let <img src="https://tex.z-dn.net/?f=i" id="TexFormula1" title="i" alt="i" align="absmiddle" class="latex-formula"> be the imag
VLD [36.1K]

Hey~freckledspots!\\----------------------

We~will~solve~for~i^{425}!

Rule~of~exponent: a^{b + c} = a^ba^c\\Apply:~i^{425}~=~i^{424}i\\ \\Rule~of~exponent: a^{bc} = (a^{b})^c\\Apply: i^{424} = i(i^2)^{212} \\\\Rule~of~imaginary~number: i^2 = -1\\Apply: i(i^2)^{212} = -1^{212}i\\\\Rule~of~exponent~if~n~is~even: -a^n = a^n\\Apply: -1^{212}i = 1^{212}i\\\\Simplify: 1^{212}i = 1i\\Multiply: 1i * 1 = i\\----------------------\\

Now~let's~solve~1^{14}!\\\\Rule~of~exponent: a^{b + c} = a^ba^c\\Apply: i^{14} = (i^2)^7\\\\Rule~of~imaginary~number: i^2 = -1\\Apply: (i^2)^7 = -1^7\\\\Rule~of~exponent~if~n~is~odd: (-a)^n = -a^n\\Apply: -1^7 = -1^7\\\\Simplify: -1^7 = -1\\----------------------\\Now,~we~have: i-1+i^{-14}+i^{44}\\----------------------

Now~lets~solve~i^{-14}\\\\Rule~of~exponent: a^{-b} = \frac{1}{a^b} \\Apply: i^{-14} = \frac{1}{i^{14}} \\\\Rule~of~exponent: a^{bc} = (a^b)^c\\Apply: \frac{1}{i^{14}} = \frac{1}{(i^2)^7}\\ \\Rule~of~imagianry~number: i^2 = -1\\Apply: \frac{1}{(i^2)^7} = \frac{1}{-1^7} \\\\Simplify: \frac{1}{-1^7} = \frac{1}{-1} \\\\Rule~of~fractions: \frac{a}{-b} = -\frac{a}{b} \\Apply: \frac{1}{-1} = -\frac{1}{1} = -1\\----------------------\\Now,~we~have: i-1-1+i^44\\----------------------

Now~let's~solve~i^{44}!\\\\Rule~of~exponent: a^{bc} = (a^b)^c\\Apply: i^{44} = (i^2)^{22}\\\\Rule~of~imaginary~numbers: i^2 = -1\\Apply: (i^2)^{22} = -1^{22}\\\\Rule~of~exponent~if~n~is~even: (-a)^n = a^n\\Apply: -1^{22} = 1^{22}\\\\Simplify: 1^{22} = 1\\----------------------\\Now,~we~have~i-1-1+1\\----------------------

Now~let's~simplify~the~expression!\\\\= i-1-1+1 \\= 1 + i -2\\= -1+i\\----------------------

Answer:\\\large\boxed{-1+i}\\----------------------

Hope~This~Helped!~Good~Luck!

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which scenario is modeled by the equation (x) (0.6) = 86 dollars and 46 cents? A picnic table is on sale for 60 percent off. The
    10·2 answers
  • Two squares, each with an area of 25units are placed side by side to form a rectangle. What is the perimeter of the rectangle?
    10·1 answer
  • Write a real-world problem that can be represented by the inequality r + 32 (greater then or equal to sign) 56
    8·1 answer
  • The temperature of an enclosure for a pet snake should be about 80°F, give or take 5°F. What are the maximum and minimum tempera
    15·2 answers
  • Mike’s mom made a batch of soup that was 8 4/5 cups. Each serving is 1 1/2 cups. How many servings of soup did Mike’s mom make?
    10·1 answer
  • Complete the following chart to summarize the different ways to prove triangles are congruent
    14·1 answer
  • 1.2 = m - 2.5 m=? <br> What would be the answer?
    15·1 answer
  • Hii please help i’ll give brainliest
    15·1 answer
  • Find 7/12 of 36 <br><br> I want a good answer!!!
    8·1 answer
  • Tính tích phân sau bằng cách dùng tọa độ cực I=∫∫ <img src="https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5E%7B2%7D%20%2B
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!