Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s
The EMT must assume that any unwitnessed water-related incident is accompanied by potential spinal damage.
<h3>What is spinal damage?</h3>
- Nerves or the spinal cord in any way damaged at the end of the spinal canal.
- A rapid strike or cut to the spine can cause a traumatic spinal cord damage.
- Below the damage site, a spinal cord injury frequently results in a lifelong loss of strength, feeling, and function.
- A lot of people with spinal cord injuries may lead productive, independent lives with the help of rehabilitation and assistive technology.
- Symptom-reducing medications and spinal stabilisation surgery are used as treatments.
- Herniated discs are among the common injuries and diseases of the spine. Stenosis of the lower back and Scoliosis are others.
- After taking part in a rehabilitation programme, over 80% of people with incomplete spinal cord injury (SCI) can walk again.
Learn more about spinal cord here:
brainly.com/question/23916836
#SPJ4
Answer:
A, the energy an object has due to its motion.
Explanation:
Kinetic energy is the energy created by motion.
Answer:
Tangential speed=5.4 m/s
Radial acceleration=
Explanation:
We are given that
Angular speed=2.59 rev/s
We know that
1 revolution=
2.59 rev=
By using 
Angular velocity=
Distance from axis=r=0.329 m
Tangential speed=
Radial acceleration=
Radial acceleration=
Answer:
a) = 10.22 rad/s
b) = 0.35 m
Explanation:
Given
Mass of the particle, m = 1.1 kg
Force constant of the spring, k = 115 N/m
Distance at which the mass is released, d = 0.35 m
According to the differential equation of s Simple Harmonic Motion,
ω² = k / m, where
ω = angular frequency in rad/s
k = force constant in N/m
m = mass in kg
So,
ω² = 115 / 1.1
ω² = 104.55
ω = √104.55
ω = 10.22 rad/s
If y(0) = -0.35 m and we want our A to be positive, then suffice to say,
The value of coefficient A in meters is 0.35 m