Answer:
B)
Explanation:
The value the scale shows is the reaction force to the normal force (they are equal by Newton's 3rd Law) that the scale exerts on Eric.
The forces on Eric are his weight (downward) and this normal force (upward), so we can write the net force over him as (also using Newton's 2nd Law):

which means

and for our values this is:

Explanation:
A centripetal force (from Latin centrum, "center" and petere, "to seek") is a force that makes a body follow a curved path. (not sure but hope this helps )
Answer:
Q = 2.95*10^5 kJ
Explanation:
In order to calculate the energy required to melt the cooper, you first calculate the energy required to reach the boiling temperature. You use the following formula:
(1)
m: mass of cooper = 540 kg
c: specific heat of cooper = 390 J/kg°C
Tb: boiling temperature of cooper = 1080°C
T1: initial temperature of cooper = 20°C
You replace the values of the parameters in the equation (1):

Next, you calculate the energy required to melt the cooper by using the following formula:
(2)
Lf: melting constant of cooper = 134000J/kg

Finally, the total amount of energy required to melt the cooper from a temperature of 20°C is the sum of Q1 and Q2:

The total energy required is 2.95*10^5 kJ
Gpe is basses on the force equation...
GPE=m*g*h=1.5kg*9.8m/s^2*8m=117.6 N*m
For a vertical spring launcher is attached to the top of a block and a ball is placed in the launcher, the position of the ball will be behind the box
<h3>What will be the position of the ball relative to the spring launcher?</h3>
Generally, the equation for the conservation of momentum principle is mathematically given as
(M+m) V1 = M*V2
Therefore, with the ball moving forward we have that; the ball at top it wii be behind the box,
Read more about Motion
brainly.com/question/605631