There are some missing data in the problem. The full text is the following:
"<span>A </span>real<span> (</span>non-Carnot<span>) </span>heat engine<span>, </span>operating between heat reservoirs<span> at </span>temperatures<span> of 710 K and 270 K </span>performs 4.1 kJ<span> of </span>net work<span>, and </span>rejects<span> 9.7 </span>kJ<span> of </span>heat<span>, in a </span>single cycle<span>. The </span>thermal efficiency<span> of a </span>Carnot heat<span> engine, operating between the same </span>heat<span> reservoirs, in percent, is closest to.."
Solution:
The efficiency of a Carnot cycle working between cold temperature </span>

and hot temperature

is given by

and it represents the maximum efficiency that can be reached by a machine operating between these temperatures. If we use the temperatures of the problem,

and

, the efficiency is

Therefore, the correct answer is D) 62 %.
Answer:
<em>a. to the west.</em>
Explanation:
An electron in a magnetic field always experience a force that tends to change its direction of motion through the magnetic field. According to Lorentz left hand rule (which is the opposite of Lorentz right hand rule for a positive charge), the left hand is used to represent the motion of an electron in a magnetic field. Hold out the left hand with the fingers held out parallel to the palm, and the thumb held at right angle to the other fingers. If the thumb represents the motion of the electron though the field, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the particle.
In this case, if we point the thumb (which shows the direction we shot the electron) to the south (towards your body), with the palm (shows the direction of the force) facing up to the roof, then the fingers (the direction of the field) will point west.
Answer:
F_aplied = fr
Explanation:
Newton's second law states that the force is proportional to the acceleration of the system, as in this case they indicate that the body moves at constant speed, the acceleration is zero, therefore
F_applied - fr = 0
F_aplied = fr
therefore the force applied by people is equal to the friction force
There is no Line (ignore(((((((((((((((((((((((((((