For this case, what we must do is fill squares in all the expressions until we find the correct result.
We have then:
x2 + y2 − 4x + 12y − 20 = 0 x2 + y2 − 4x + 12y = 20
x2 − 4x + y2 + 12y = 20
x2 − 4x + (12/2)^2 + y2 + 12y + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
x2 − 4x + (6)^2 + y2 + 12y + (-2)^2 = 20 + (6)^2 + (-2)^2
x2 − 4x + 36 + y2 + 12y + 4 = 20 + 36 + 4
(x − 2)2 + (y + 6)2 = 60
3x2 + 3y2 + 12x + 18y − 15 = 0
x2 + y2 + 4x + 6y − 5 = 0
x2 + y2 + 4x + 6y = 5
x2 + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2
x2 + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2
x2 + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9
(x + 2)2 + (y + 3)2 = 18
2x2 + 2y2 − 24x − 16y − 8 = 0
x2 + y2 − 12x − 8y − 4 = 0
x2 + y2 − 12x − 8y = 4
x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
(x − 6)2 + (y − 4)2 = 56
x2 + y2 + 2x − 12y − 9 = 0
x2 + y2 + 2x - 12y = 9
x2 + 2x + y2 - 12y = 9
x2 + 2x + (2/2)^2 + y2 - 12y + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
x2 + 2x + (1)^2 + y2 - 12y + (-6)^2 = 9 + (1)^2 + (-6)^2
x2 + 2x + 1 + y2 - 12y + 36 = 9 + 1 + 36
(x + 1)2 + (y − 6)2 = 46
Answer:
-5
Step-by-step explanation:
-4x +10 =5(x +11)
-4x +10 =5x +55
-4x - 5x =55 - 10
-9x =45
x=-45 :9
x=-5
Answer:
9
Step-by-step explanation:
w+13-
=16
w ·
-
+13=16
+13=16
=3
w=9
1) The solution for m² - 5m - 14 = 0 are x=7 and x=-2.
2)The solution for b² - 4b + 4 = 0 is x=2.
<u>Step-by-step explanation</u>:
The general form of quadratic equation is ax²+bx+c = 0
where
- a is the coefficient of x².
- b is the coefficient of x.
- c is the constant term.
<u>To find the roots :</u>
- Sum of the roots = b
- Product of the roots = c
1) The given quadratic equation is m² - 5m - 14 = 0.
From the above equation, it can be determined that b = -5 and c = -14
The roots are -7 and 2.
- Sum of the roots = -7+2 = -5
- Product of the roots = -7
2 = -14
The solution is given by (x-7) (x+2) = 0.
Therefore, the solutions are x=7 and x= -2.
2) The given quadratic equation is b² - 4b + 4 = 0.
From the above equation, it can be determined that b = -4 and c = 4
The roots are -2 and -2.
- Sum of the roots = -2-2 = -4
- Product of the roots = -2
-2 = 4
The solution is given by (x-2) (x-2) = 0.
Therefore, the solution is x=2.
48-126=-78
-78/126= -0.<span>619047619
-0.</span>619047619x100=<span>61.9047619%
This can be rounded to 62%
Hope this helps :)</span>