Answer:
D) the critical point
Explanation:
Point A is the critical point in phase diagram. This is the highest temperature and pressure at which a pure material can exist in vapor/liquid equilibrium. Pretty cool!
Answer:
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -
Explanation:
Electronegativity determines the polarity . There may be two atoms in a bond with high electronegativity, in such cases the positive charge is given to atom with comparatively lower electronegativity. Electronegativity determines the easiness with which an atom attract electrons in a chemical bond. A polar bond is formed when the difference in the electronegativity of two combining atoms is between 0.4 and 1.7. The correct direction is
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -
Answer:
The percent by mass of copper in the mixture was 32%
Explanation:
The ammount of HNO₃ used is:
mol HNO₃ = volume * concentration
mol HNO₃ = 0.015 l * 15.8 mol/l
mol HNO₃ = 0.237 mol
According to the reaction, 4 mol HNO₃ will react with 1 mol Cu and produce 1 mol Cu²⁺. Since we have 0.237 mol HNO₃, the amount of Cu that could react would be (0.237 mol HNO₃ * 1 mol Cu / 4 mol HNO₃) 0.06 mol. This reaction would produce 0.060 mol Cu²⁺, however, only 0.010 mol Cu²⁺ were obtained, indicating that only 0.010 mol Cu were present in the mixture. This means that the acid was in excess, so we can assume that all copper present in the mixture has reacted.
Since 0.010 mol of Cu²⁺ were produced, the amount of Cu was 0.01 mol.
1 mol of Cu has a mass of 63.5 g, then 0.01 mol has a mass of:
0.01 mol Cu * 63.5 g / 1 mol = 0.635 g.
Since this amount was present in 2.00 g mixture, the amount of copper in 100 g of the mixture will be:
100 g(mixture) * 0.635 g Cu / 2 g(mixture) = 32 g
Then, the percent by mass of Cu (which is the mass of Cu in 100 g mixture) is 32%