FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :

186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :

Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :

So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :

A) c = 3 x 10^8 m/s
f = 7.15 x 10^14 Hz
c = λ x f (=) λ = 3 x 10^8 / 7.15 x 10^14 = 4.19 x 10^-7 m = 419.6 nm
B) E = h f
H = Planck's constant = 6.63 x 10^-34 J/s
E = 6.63 x 10^-34 x 7.15 x 10^14 = 4.74 x 10^-19 J
Read more on Brainly.com -
brainly.com/question/5760368#readmore
Answer: Farmers were paid to practice soil-conserving techniques like crop rotation and terracing
Explanation:
read about it here: https://www.pbs.org/wgbh/americanexperience/features/dust-bowl-surviving-dust-bowl/
Answer:
Four times the original amount if only one orange was used
Explanation:
We can assume that the oranges all have equal voltages. Connecting them in series will have an increasing effect on the voltage delivered. In our case, this will produce 4 times the voltage of the circuit when only one orange is used.
Whenever simple cells are connected in series, the voltages of the individual cells are added up to form the voltage of the whole circuit.
Let us assume that the voltage of each of the oranges is approximately 0.9 volts. The Voltage produced when the 4 oranges are joined in series is 0.9 + 0.9 + 0.9 + 0.9 = 3.6 volts
Answer:
wave
Explanation:
'Wave' is a common term for a number of different ways in which energy is transferred: In electromagnetic waves, energy is transferred through vibrations of electric and magnetic fields.
i hope this helps and your welcom