1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
2 years ago
7

Which relation is a function?

Mathematics
2 answers:
brilliants [131]2 years ago
7 0

Answer:

The last one at the right

Step-by-step explanation:

It is a function because not of the x axis numbers are repeated.

Bumek [7]2 years ago
3 0

Answer:

The bottom right

Step-by-step explanation:

No two different coordinates in one value should have a repeating number in another

You might be interested in
Help asap please!!..
Semenov [28]

Answer:

9x² - 4/3x + ¼

Step-by-step explanation:

(3x - ½)²

(3x - ½)(3x -½)

9x² - ⅔x - ⅔x + ¼

9x² - 4/3x + ¼

5 0
2 years ago
What is the cotangent of angle G? <br><br> A. 24/10 <br> B. 13/12 <br> C. 5/12 <br> D. 12/10
sveta [45]
A. 
Tangent is Opp/Adj
tan = 10/24

And cotan is tan flipped so
Adj/Opp

Cot= 24/10

A.
5 0
3 years ago
A triangle has the sides of 7 in, 14 in, and 25 in. Is it a right triangle? ​
MariettaO [177]

Answer:

No it does not equal a right triangle.

3 0
2 years ago
Let P and Q be polynomials with positive coefficients. Consider the limit below. lim x→[infinity] P(x) Q(x) (a) Find the limit i
jenyasd209 [6]

Answer:

If the limit that you want to find is \lim_{x\to \infty}\dfrac{P(x)}{Q(x)} then you can use the following proof.

Step-by-step explanation:

Let P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0} and Q(x)=b_{m}x^{m}+b_{m-1}x^{n-1}+\cdots+b_{1}x+b_{0} be the given polinomials. Then

\dfrac{P(x)}{Q(x)}=\dfrac{x^{n}(a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n})}{x^{m}(b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m})}=x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}

Observe that

\lim_{x\to \infty}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\dfrac{a_{n}}{b_{m}}

and

\lim_{x\to \infty} x^{n-m}=\begin{cases}0& \text{if}\,\, nm\end{cases}

Then

\lim_{x\to \infty}=\lim_{x\to \infty}x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\begin{cases}0 & \text{if}\,\, nm \end{cases}

3 0
3 years ago
(2,?) is on the line x + 3 = y. Find the other half of the coordinate.
Brut [27]
Sub in 2 for x and solve for y

x + 3 = y
2 + 3 = y
5 = y

so ur points are : (2,5)
4 0
3 years ago
Read 2 more answers
Other questions:
  • A chief makes one 1 1/2 gallons of soup in a large pot how many one cup servings can the chief get from this large pot of soup
    6·1 answer
  • There are 53 oranges in a box that contains a total of 77 pieces of fruit. How many oranges need to be added so that the box con
    15·1 answer
  • Which of the following number odd<br>​
    7·2 answers
  • Please help me idk this
    8·1 answer
  • Solve. -1/2+(3/4*4/9)=
    15·1 answer
  • What is the probability that a randomly selected number from 30 to 61 is divisible by 7 and then divisible by 20 after replacing
    8·1 answer
  • Simplify 122.123<br> O A. 125<br> O B. 245<br> O C. 1445<br> O D. 125
    14·1 answer
  • If the shaded part of this chocolate represents $21.00 and the unshaded part represents $5.00 each, what is the value of the who
    5·2 answers
  • 2. A physical fitness researcher devises a test of strength and finds that the results are normally distributed with a mean of 1
    15·1 answer
  • Can someone please help​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!