Answer:
A)

B)

C)

Step-by-step explanation:
We are given the function:

A)
Given that h(1) = 20, we want to find <em>k</em>.
h(1) = 20 means that <em>h</em>(x) = 20 when <em>x</em> = 1. Substitute:

Simplify:

Anything raised to zero (except for zero) is one. Therefore:

B)
Given that h(1) = 40, we want to find 2<em>k</em> + 1.
Likewise, this means that <em>h</em>(x) = 40 when <em>x</em> = 1. Substitute:

Simplify:

We can take the natural log of both sides:

By definition, ln(e) = 1. Hence:

Therefore:

C)
Given that h(1) = 10, we want to find <em>k</em> - 3.
Again, this meas that <em>h</em>(x) = 10 when <em>x</em> = 1. Substitute:

Simplfy:

Take the natural log of both sides:

Therefore:

Therefore:

Y= 10 because you have a 180 degree angle split in half which equals 90 degrees so 3•30=90 the the other side has to equal 90 degrees so 2•30=60 then 3•10=30 so then just add 60 and 20 and there is your 90
Answer:
Part 1) Helen's age is 32 years old and Jane's age is 24 years old
Part 2) 13 twenty-dollar bills
Step-by-step explanation:
Part 1) Helen is 8 years older than Jane. Twenty years ago Helen was three times as old as Jane. How old is each now and what is the equation?
Let
x----> Helen's age
y---> Jane's age
we know that
x=y+8 ----> equation A
(x-20)=3(y-20) -----> equation B
substitute equation A in equation B and solve for y
(y+8-20)=3(y-20)
y-12=3y-60
3y-y=60-12
2y=48
y=24 years
Find the value of x
x=y+8
x=24+8=32 years
Part 2)
Let
x-----> the number of five-dollar bills
y----> the number of twenty-dollar bills
we know that
5x+20y=305 -----> equation A
y=x+4 ------> x=y-4 ------> equation B
substitute equation B in equation A and solve for y
5(y-4)+20y=305
5y-20+20y=305
25y=325
y=13 twenty-dollar bills
Find the value of x
x=y-4
x=13-4=9 five-dollar bills