Answer:
Option D. x ≥ -4
Step-by-step explanation:
____________
Answer:
f(-3) = -2
f(-2.6) = -2
f(0.6) = 2.4
f(4.5) = 8.5
Step-by-step explanation:
(Whole question:
Evaluate the piecewise function for the given values.
Find f(-3), f(-2,6), f(0.6), and f(4.5) for f(x)={ -2 If x ≤ 0 4x. If 0 <x <1. x + 4. If x ≥ 1)
As the piecewise function shows, the function f(x) has the value of -2 for values of x lesser or equal than 0, has the value of 4x if the value of x is between 0 and 1, and has the value of x+4 for values of x greater or equal than 1.
So, for f(-3), the value of x is lesser than 0, so we have that f(-3) = -2
For f(-2.6), the value of x is lesser than 0, so we have that f(-3) = -2
For f(0.6), the value of x is between 0 and 1, so we have that f(0.6) = 4*0.6 = 2.4
For f(4.5), the value of x is greater than 1, so we have that f(4.5) = 4.5 + 4 = 8.5
Answer: The total percentage loss would be 67%.
Step-by-step explanation:
Since we have given that
Rate of decline each year = 20%
Number of years = 5
We need to find the total percentage loss in value of the house at the end of 5 years.
So, Total percentage loss would be

Hence, the total percentage loss would be 67%.
Sadly, after giving all the necessary data, you forgot to ask the question.
Here are some general considerations that jump out when we play with
that data:
<em>For the first object:</em>
The object's weight is (mass) x (gravity) = 2 x 9.8 = 19.6 newtons
The force needed to lift it at a steady speed is 19.6 newtons.
The potential energy it gains every time it rises 1 meter is 19.6 joules.
If it's rising at 2 meters per second, then it's gaining 39.2 joules of
potential energy per second.
The machine that's lifting it is providing 39.2 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(2)(4) = 4 joules.
<em>For the second object:</em>
The object's weight is (mass) x (gravity) = 4 x 9.8 = 39.2 newtons
The force needed to lift it at a steady speed is 39.2 newtons.
The potential energy it gains every time it rises 1 meter is 39.2 joules.
If it's rising at 3 meters per second, then it's gaining 117.6 joules of
potential energy per second.
The machine that's lifting it is providing 117.6 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(4)(9) = 18 joules.
If you go back and find out what the question is, there's a good chance that
you might find the answer here, or something that can lead you to it.