Answer :
The equilibrium concentration of CO is, 0.016 M
The equilibrium concentration of Cl₂ is, 0.034 M
The equilibrium concentration of COCl₂ is, 0.139 M
Explanation :
The given chemical reaction is:

Initial conc. 0.1550 0.173 0
At eqm. (0.1550-x) (0.173-x) x
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.139 and x = 0.193
We are neglecting value of x = 0.193 because equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.139
The equilibrium concentration of CO = (0.1550-x) = (0.1550-0.139) = 0.016 M
The equilibrium concentration of Cl₂ = (0.173-x) = (0.173-0.139) = 0.034 M
The equilibrium concentration of COCl₂ = x = 0.139 M
Schrödinger found the quantum mechanical model of the atom after Bohr’s model.
It is better than Bohr’s model because you can use mathematical equations to find electrons certain position. Unlike Bohr’s which is just a “cloud” where the an electron could possibly be.
Answer:
0.486 L
Explanation:
Step 1: Write the balanced reaction
2 KCIO₃(s) ⇒ 2 KCI (s) + 3 O₂(g)
Step 2: Calculate the moles corresponding to 1.52 g of KCIO₃
The molar mass of KCIO₃ is 122.55 g/mol.
1.52 g × 1 mol/122.55 g = 0.0124 mol
Step 3: Calculate the moles of O₂ produced from 0.0124 moles of KCIO₃
The molar ratio of KCIO₃ to O₂ is 2:3. The moles of O₂ produced are 3/2 × 0.0124 mol = 0.0186 mol
Step 4: Calculate the volume corresponding to 0.0186 moles of O₂
0.0186 moles of O₂ are at 37 °C (310 K) and 0.974 atm. We can calculate the volume of oxygen using the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 0.0186 mol × (0.0821 atm.L/mol.K) × 310 K/0.974 atm = 0.486 L
Answer:
the mass of the products must equal the mass of reactants. which means the total mass is 10 grams.
Explanation: