An osmolarity of saline solution is 308 mosmol/L.
m(NaCl) = 9 g; the mass of sodium chloride
V(solution) = 1 L; the volume of the saline solution
n(NaCl) = 9 g ÷ 58.44 g/mol
n(NaCl) = 0.155 mol; the amount of sodium chloride
number of ions = 2
Osmotic concentration (osmolarity) is a measure of how many osmoles of particles of solute it contains per liter.
The osmolarity = n(NaCl) ÷ V(solution) × 2
The osmolarity = 0.154 mol ÷ 1 L × 2
The osmolarity = 0.154 mol/L × 1000 mmol/m × 2
The osmolarity of the saline solution = 308 mosm/L.
More about osmolarity: brainly.com/question/13258879
#SPJ4
Answer:
Option (d) is correct
N³⁻ > F⁻ > Mg²⁺ > Si⁴⁺
Explanation:
Total electrons for all the species = 10
So these are <u>iso electronic</u> with each other.
We know
Ionic radii ∝ 
- Si⁴⁺ has 14 protons and 10 electrons
- Mg²⁺ has 12 protons and 10 electrons
- N³⁻ has 7 protons and 10 electrons
- F⁻ has 9 protons and 10 electrons
- Iso electronic species with greatest number of protons have small size and vice versa.
- So Si⁺⁴ have smallest size and N³⁻ have largest in size
RADIATION. Radio waves, microwaves, IR, light, UV, x-rays, GAMMA waves etc are ALL Electromagnetic radiation. The difference between ALL the above is the frequency, I.E. The number of waves per second. The higher the frequency the more energy.
The formula of Iron(III) oxide is Fe2O3
In order to calculate the mass of iron in a given sample of iron(III) oxide, we must first know the mass percentage of iron in iron(III) oxide. This is calculated by:
[mass of iron in one mole of iron(III) oxide/ mass of one mole of iron(III) oxide] * 100
= [(moles of iron * Mr of iron) / (moles of Iron * Mr of Iron + moles of Oxygen * Mr of Oxygen)] * 100
= [(2 * 56) / (2 * 56 + 3 * 16)] * 100
= (112 / 160) * 100
= 70%
Thus, in a 100g sample, the weight of iron will be:
100 * 70%
= 70 grams