Answer:
17. tie hair up
wear goggles
18. i don't know
19. you light it on the side of the box
20. it should be orange because that is the safest.
21. you turn down the electricity thing
Answer:
Explanation:
From the given information:
The density of O₂ gas = 
here:
P = pressure of the O₂ gas = 310 bar
= 
= 305.97 atm
The temperature T = 415 K
The rate R = 0.0821 L.atm/mol.K
molar mass of O₂ gas = 32 g/mol
∴

= 287.37 g/L
To find the density using the Van der Waal equation
Recall that:
the Van der Waal constant for O₂ is:
a = 1.382 bar. L²/mol² &
b = 0.0319 L/mol
The initial step is to determine the volume = Vm
The Van der Waal equation can be represented as:

where;
R = gas constant (in bar) = 8.314 × 10⁻² L.bar/ K.mol
Replacing our values into the above equation, we have:



After solving;
V = 0.1152 L
∴

= 277.77 g/L
We say that the repulsive part of the interaction potential dominates because the results showcase that the density of the Van der Waals is lesser than the density of ideal gas.
Answer:
reactant
Explanation:
I watched a chem video and this is what they called it.
Answer:
Thermohaline Circulation
Explanation:
The process is known as “Thermohaline Circulation”. In the Earth’s polar regions ocean water gets very cold, forming sea ice. As a consequence the surrounding seawater gets saltier, because when sea ice forms, the salt is left behind. As the seawater gets saltier, its density increases, and it starts to sink.
Answer: 3.42 moles CO = 84.0g, is not true.
Explanation:
Moles is given by the formular; Mass / Molar Mass.
Therefore; 0.2 moles O2 = 6g is true when we multiply 32g x 0.2 = 6g approximately.
0.75 moles H2CO3 = 47g.
Molar formular for H2CO3 = 2 + 12 + 48 =62g.
If we multiply 62g (molar mass ) by 0.75moles, it gives us 47g approximately.
3.42 moles CO = 84g
molar mass of CO = 12 + 16 = 28g
Multiply 28g x 3.42 moles = 95.76g, which is not true.