Answer:
80.7 L
Explanation:
PV = nRT
P = 1520 mmHg = 2 atm
n = 5 mol
R = 0.08206 (L * atm)/(mol * K)
T = 393.15 K
2 (V) = 5 (0.08206) (393.15)
V ≈ 80.7 L
Hey there!:
Molar mass of Mg(OH)2 = 58.33 g/mol
number of moles Mg(OH)2 :
moles of Mg(OH)2 = 30.6 / 58.33 => 0.5246 moles
Molar mass of H3PO4 = 97.99 g/mol
number of moles H3PO4:
moles of Mg(OH)2 = 63.6 / 97.99 => 0.649 moles
Balanced chemical equation is:
3 Mg(OH)2 + 2 H3PO4 ---> Mg3(PO4)2 + 6 H2O
3 mol of Mg(OH)2 reacts with 2 mol of H3PO4 ,for 0.5246 moles of Mg(OH)2, 0.3498 moles of H3PO4 is required , but we have 0.649 moles of H3PO4, so, Mg(OH)2 is limiting reagent !
Now , we will use Mg(OH)2 in further calculation .
Molar mass of Mg3(PO4)2 = 262.87 g/mol
According to balanced equation :
mol of Mg3(PO4)2 formed = (1/3)* moles of Mg(OH)2
= (1/3)*0.5246
= 0.1749 moles of Mg3(PO4)2
use :
mass of Mg3(PO4)2 = number of mol * molar mass
= 0.1749 * 262.87
= 46 g of Mg3(PO4)2
Therefore:
% yield = actual mass * 100 / theoretical mass
% = 34.7 * 100 / 46
% = 3470 / 46
= 75.5%
Hope that helps!
He realized that the physical and chemical properties of elements<span> were related to their atomic mass in a '</span>periodic<span>' way, and </span>arranged<span> them so that groups of </span>elements<span> with similar properties fell into vertical columns in </span>his table<span>.
</span><span>
</span>
Answer: Its A or D
wish i had an actual answer sorry..
Answer:
Explanation:
Ionic (or electrovalent) compounds conduct electricity when there they are in the aqueous state/solution because the charges of ions of these compounds are what carry the electric charges in the aqueous solution as a result of free movement within the aqueous solution which they do not "have" when in there solid state (where they have a highly restricted movement/compacted structure).