Burning Mg in the air and reacting with O2 forming a white powder of MnO
So the equation is going to be:
Mn + O2 ⇒ MnO (this equation is not conserved)
to make it equilibrium:
1- First we should put 2Mno to equal the O2 on both sides.
So it will be:
Mg + O2⇒ 2MgO
2- Second we should put 2Mn to equal the Mn on both sides.
2Mg + O2⇒ 2MgO (this equation is conserved)
After putting the physical states the final equilibrium equation is going to be:
Δ
2Mg(s) + O2(g)⇒ 2MgO(s)
The weathering process caused by cycles of freezing and thawing of water in surface pores, cracks, and other openings
Answer:
Is better use the Benedict's test by the increase in the amount of the products if the enzyme is a reductase
Explanation:
The Benedict's test works by the reaction of the reducing sugars with the ion cupric of the reactive. If the enzyme is a reductase (degrades polysaccharides into bi o monosaccharides), it should cut the polysaccharide bond and the products would react with the Benedict's cupric ion
I hope you undestand me
Answer:

Explanation:
Given that:-
Pressure = 
The expression for the conversion of pressure in Pascal to pressure in atm is shown below:
P (Pa) =
P (atm)
Given the value of pressure = 43,836 Pa
So,
=
atm
Pressure = 6.80977 atm
Volume =
= 2.3 L ( 1 m³ = 1000 L)
n = 2 mol
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
6.80977 atm × 2.3 L = 2 mol × 0.0821 L.atm/K.mol × T
⇒T = 95.39 K
The expression for the kinetic energy is:-

k is Boltzmann's constant =
T is the temperature
So, 
