The large piece of jewelry that has a mass of 132.6 g and when is submerged in a graduated cylinder that initially contains 48.6 ml water and the volume increases to 61.2 ml once the piece of jewelry is submerged, has a density of: 10.523 g/ml
To solve this problem the formulas and the procedures that we have to use are:
Where:
- d= density
- m= mass
- v= volume
- v(f) = final volume
- v(i) = initial volume
Information about the problem:
- m = 132.6 g
- v(i) = 48.6 ml
- v(f) = 61.2 ml
- v = ?
- d =?
Applying the volume formula we get:
v = v(f)-v(i)
v = 61.2 ml - 48.6 ml
v = 12.6 ml
Applying the density formula we get:
d = m/v
d = 132.6 g/12.6 ml
d = 10.523 g/ml
<h3>What is density?</h3>
It is a physical quantity that expresses the ratio of the body mass to the volume it occupies.
Learn more about density in: brainly.com/question/1354972
#SPJ4
Boiling Point, Melting Point, Viscosity, Surface Tension. Decrease: Vapor Pressure.
Acid - base indicators (also known as pH indicators) are substances which change color with pH. They are usually weak acids or bases. you use them if you want to know if a solution is an acid or it it's a base
Answer:- 3.12 g carbon tetrachloride are needed.
Solution:- The balanced equation is:

From given actual yield and percent yield we will calculate the theoretical yield that would be further used to calculate the grams of carbon tetrachloride.
percent yield formula is:
percent yield = 


theoretical = 3.44 g
From balanced equation, there is 2:1 mol ratio between dichloethane and carbon tetrachloride.
Molar mass of dichloroethane is 84.93 gram per mol and molar mass of carbon tetrachloride is 153.82 gram per mol.

= 
So, 3.12 grams of carbon tetrachloride are needed to be reacted.
Answer:
54g of water
Explanation:
Based on the reaction, 1 mole of methane produce 2 moles of water.
To solve this question we must find the molar mass of methane in order to find the moles of methane added. With the moles of methane and the chemical equation we can find the moles of water produced and its mass:
<em>Molar mass CH₄:</em>
1C = 12g/mol*1
4H = 1g/mol*4
12g/mol + 4g/mol = 16g/mol
<em>Moles methane: </em>
24g CH₄ * (1mol / 16g) = 1.5 moles methane
<em>Moles water:</em>
1.5moles CH₄ * (2mol H₂O / 1mol CH₄) = 3.0moles H₂O
<em>Molar mass water:</em>
2H = 1g/mol*2
1O = 16g/mol*1
2g/mol + 16g/mol = 18g/mol
<em>Mass water:</em>
3.0moles H₂O * (18g / mol) =
<h3>54g of water</h3>