Answer:
a. Ag ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
b. Mg ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.
c. Cu ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
d. Pb ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
e. Sn ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
f. Zn ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.
g. Au ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
Explanation:
Cathodic protection of iron involves using another more reactive metal as a sacrificial anode. The reactivity series of metals arranges metals based on decreasing order of reactivity. The more reactive metals are found higher up in the series while the least reactive metals are found at the lower ends of the series. Thus, metals above iron in the reactivity series can serve as sacrificial anodes by protecting against corrosion, while those lower than iron cannot.
Based on the reactivity series, the following metals can be classified as either a sacrificial anode for iron or not:
a. Ag ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
b. Mg ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.
c. Cu ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
d. Pb ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
e. Sn ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.
f. Zn ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.
g. Au ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.