Answer:
Answer is B
just do your work and proof the work and that will give u the right answer
Answer:
Option C is correct.
Step-by-step explanation:
y = x^2-x-3 eq(1)
y = -3x + 5 eq(2)
We can solve by substituting the value of y in eq(2) in the eq(1)
-3x+5 = x^2-x-3
x^2-x+3x-3-5=0
x^2+2x-8=0
Now factorizing the above equation
x^2+4x-2x-8=0
x(x+4)-2(x+4)=0
(x-2)(x+4)=0
(x-2)=0 and (x+4)=0
x=2 and x=-4
Now finding the value of y by placing value of x in the above eq(2)
put x =2
y = -3x + 5
y = -3(2) + 5
y = -6+5
y = -1
Now, put x = -4
y = -3x + 5
y = -3(-4) + 5
y = 12+5
y =17
so, when x=2, y =-1 and x=-4 y=17
(2,-1) and (-4,17) is the solution.
So, Option C is correct.
Okay. So, we should convert fractions to the least common denominator, which is 20. That would be 2 5/20 and 2 16/20. Add both of those numbers up to get 5 1/20. Taylor ran and walked 5 1/20 miles.
Find the distance between the points t(13, 1.6)t(13, 1.6) and v(5.4, 3.7)v(5.4, 3.7).
1
SEE ANSWER
ADD ANSWER
+5 PTS
Advertisement
Jeffrey5687 is waiting for your help.
Add your answer and earn points.
Answer Expert Verified
1.0/5
0
eco92
Ambitious
1.1K answers
4.7M people helped
The distance between any 2 points P(a,b) and Q(c,d) in the coordinate plane, is given by the formula:
Thus the distance between points t(13, 1.6) and v(5.4, 3.7) is found using the formula as:
Answer:
b1 = 2 ; r = 3
Step-by-step explanation:
Given that :
if b3 −b1 = 16 and b5 −b3 = 144.
For a geometric series :
Ist term = a
Second term = ar
3rd term = ar^2
4th term = ar^3
5th term = ar^4 ;...
If b3 - b1 = 16;
ar^2 - a = 16
a(r^2 - 1) = 16 - - - (1)
b5 - b3 = 144
ar^4 - ar^2 = 144
ar^2(r^2 - 1) = 144 - - - - (2)
Divide (1) by (2)
a(r^2 - 1) / ar^2(r^2 - 1) = 16 /144
a / ar^2 = 1 / 9
ar^2 = 9a
Substitute for a in ar^2 - a = 16
9a - a = 16
8a = 16
a = 2
From ar^2 - a = 16
2r^2 - 2 = 16
2r^2 = 16 + 2
2r^2 = 18
r^2 = 18 / 2
r^2 = 9
r = √9
r = 3
Hence ;
a = b1 = 2 ; r = 3