A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
Answer:
a) 
b) entropy of the sistem equal to a), entropy of the universe grater than a).
Explanation:
a) The change of entropy for a reversible process:


The energy balance:
![\delta U=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=%5Cdelta%20U%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)
If the process is isothermical the U doesn't change:
![0=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=0%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)


The work:

If it is an ideal gas:


Solving:

Replacing:


Given that it's a compression: V2<V1 and ln(V2/V1)<0. So:

b) The entropy change of the sistem will be equal to the calculated in a), but the change of entropy of the universe will be 0 in a) (reversible process) and in b) has to be positive given that it is an irreversible process.
Its condensation
the vapour has a lot of kinetic energy but if it cools down it loses that energy and condenses into a liquid
hope that helps
The density of water is a physical property.
You can measure it without changing the water to a different substance.
It is <em>not a physical change</em> because the water does not change to ice or steam.
You can observe a <em>chemical property</em> or a <em>chemical change</em> only if the water <em>changes to a different substance</em>.
Answer:
The mass of 0.100 mole of neon is 2.018 grams.
Explanation:
As we know the formula to find mass:
Number of moles = Mass/ Molar mass
0.100 = Mass/ 20.17
0.100 x 20.17 = Mass
Mass=2.018 grams.
Hope it helps!