Answer:
%88.88... and on and on
Formula Nonsense: percentage = b/l then *100 add % sign
so P= 32/36 so 0.888....*100= 88.88... so she made 88%
Answer:
These are all mathematical divisions of time. Fractions are used in music to indicate lengths of notes. In a musical piece, the time signature tells the musician ...
step-by-step equations:
Music is made up of all sorts of rhythms, and each rhythm can be broken down into smaller pieces: measures, which are fractions of rhythmic phrases, and beats, ...Step-by-step explanation:
Answer:6.75
Step-by-step explanation:
27 divided by 4
Answer:
Step-by-step explanation:
I see you're in college math, so we'll solve this with calculus, since it's the easiest way anyway.
The position equation is
That equation will give us the height of the rock at ANY TIME during its travels. I could find the height at 2 seconds by plugging in a 2 for t; I could find the height at 12 seconds by plugging in a 12 for t, etc.
The first derivative of position is velocity:
v(t) = -3.72t + 15 and you stated that the rock will be at its max height when the velocity is 0, so we plug in a 0 for v(t):
0 = -3.72t + 15 and solve for t:\
-15 = -3.72t so
t = 4.03 seconds. This is how long it takes to get to its max height. Knowing that, we can plug 4.03 seconds into the position equation to find the height at 4.03 seconds:
s(4.03) = -1.86(4.03)² + 15(4.03) so
s(4.03) = 30.2 meters.
Calculus is amazing. Much easier than most methods to solve problems like this.

It's a slope-intercept form where a slope = -1.5 and y-intercept = 3.
x - intercept: y = 0
Therefore we have the equation:
-1.5x + 3 = 0 |-3
-1.5x = -3 |:(-1.5)
x = 2
Answer: x-intercept = 2, y-intercept = 3