Hope this answers your question!! Ask any help at anytime
Answer:
c)At a distance greater than r
Explanation:
For a satellite in orbit around the Earth, the gravitational force provides the centripetal force that keeps the satellite in motion:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance between the satellite and the Earth's centre
v is the speed of the satellite
Re-arranging the equation, we write

so we see from the equation that when the speed is higher, the distance from the Earth's centre is smaller, and when the speed is lower, the distance from the Earth's centre is larger.
Here, the second satellite orbit the Earth at a speed less than v: this means that its orbit will have a larger radius than the first satellite, so the correct answer is
c)At a distance greater than r
<span>16.82 x 0.04 = 0.67 rad
I hope I helped if you really need I can explain to you how I got that answer but Thats correct im sorry it took 2 days for me to find this answer but if you or anybody else still needs the answer for this question here it is :) have a fantastic day guys Spring Break is coming up soon :)</span>
Answer:
A. Earth's gravity pulling down on air molecules
Explanation:
Air pressure refers to the weight of the air per unit surface area. It is the amount of gravitational force which is pulling down the molecules of air.
The common unit of air pressure is: Pascal, atm
1 atm = 101325 Pa
As the column of the air above increases, the air pressure increase. This is because with the increase in amount of air, the weight increase of the air increases. This is the reason a diver feels immense pressure in the sea and cooking takes a lot of time on hilly areas because of low air pressure.
Answer:
In general solids are easier to transport than liquids, but the above metal example is a valid one and the only other one that comes to mind is that of concrete. It is mixed as a liquid and transported as such, but then sprayed or laid down to dry and form a solid surface or filler.
Explanation: