By the law of universal gravitation, the gravitational force <em>F</em> between the satellite (mass <em>m</em>) and planet (mass <em>M</em>) is
<em>F</em> = <em>G</em> <em>M</em> <em>m</em> / <em>R </em>²
where
<em>• G</em> = 6.67 × 10⁻¹¹ m³/(kg•s²) is the universal gravitation constant
• <em>R</em> = 2500 km + 5000 km = 7500 km is the distance between the satellite and the center of the planet
Solve for <em>M</em> :
<em>M</em> = <em>F R</em> ² / (<em>G</em> <em>m</em>)
<em>M</em> = ((3 × 10⁴ N) (75 × 10⁵ m)²) / (<em>G</em> (6 × 10³ kg))
<em>M</em> ≈ 2.8 × 10¹⁴ kg
Answer:
The value of spring constant is 266.01 
Explanation:
Given:
Mass of pellet
kg
Height difference of pellet rise
m
Spring compression
m
From energy conservation law,
Spring potential energy is stored into potential energy,

Where
spring constant, 



Therefore, the value of spring constant is 266.01 
False, you pass a light through a mixture If the light bounces off the particles, you will see the light shine through and you have a colloid mixture
315g/95gmol-1
3.315 moles of MgCl2