Box-1 . . . D
Box-2 . . . B
Box-3 . . . A
Box-4 . . . C
As a experiment you could use is The affect of light in plants. A study He can do is maybe about Gravity affects and how it works on weight. Also you can do a all time favorite the Mentos and Diet Coke Experiment.
Hopefully one of these ideas will inspire you!
It's very tough to use the drop-down menus for this. I'll just do the best I can without them.
-- Objects with the same charge repel each other with electrostatic force, and attract each other with gravity. You can ignore the gravity because the electrostatic force is so much stronger.
-- Objects with opposite charge attract each other with electrostatic force, and also attract each other with gravity. You can ignore the gravity because the electrostatic force is so much stronger.
-- Objects with no charge have no electrostatic force between them, and they only attract each other with gravity.
The speed of Matt is 10 mph.
Doug runs 2 miles an hour faster than Matt, so let Matt’s speed equal x miles per hour. Then Doug’s speed equals x + 2 miles per hour. Each lap is one-quarter of a mile, so Doug runs 1.5 miles in the time it takes Matt to run 1.25 miles.
Rate of Matt is x
Rate of Dough is (x + 2)
Time taken by Matt is 1.25/x
Time taken by Dough is 1.25/(x + 2)
Distance covered by Matt is 1.25
Distance covered by Dough is 1.5
Dough and Matt took the same amount of time from the time Doug started, so make an equation by setting the two times in the chart equal to each other, and then solve for x:
= 
1.5x = 1.25(x + 2)
1.5x = 1.25x + 2.5
0.25x = 2.5
x = 10
So Matt ran at 10 miles per hour.
To know more about time, speed and distance, visit: brainly.com/question/26046491
#SPJ4