<u>Answer:</u>
<em>
heat is released by the combustion of
of methane</em>
<u>Explanation:</u>
The value of enthalpy determines whether the reaction is exothermic or endothermic. If the enthalpy change is positive, then the reaction is endothermic (heat or energy released) and if the enthalpy change is negative then the reaction is exothermic (heat or energy absorbed).

=![2 ( -(393.5 KJ)/mol)-[2( -74.6 KJ/mol)+4(-241.82 KJ/mol)]](https://tex.z-dn.net/?f=2%20%28%20-%28393.5%20KJ%29%2Fmol%29-%5B2%28%20-74.6%20KJ%2Fmol%29%2B4%28-241.82%20KJ%2Fmol%29%5D)
![= -787 KJ/mol-[ -149.2 KJ/mol-967.28 KJ/mol]](https://tex.z-dn.net/?f=%3D%20-787%20KJ%2Fmol-%5B%20-149.2%20KJ%2Fmol-967.28%20KJ%2Fmol%5D)


<em>In this question, </em><em>the enthalpy of formation</em><em> has positive value and hence the </em><em>reaction is endothermic</em><em> in which the heat is released.
</em>
Answer:
C) Through genomic imprinting, methylation regulates expression of the paternal copy of the gene in the brain.
Explanation:
The pattern of gene expression wherein either paternal or maternal gene is expressed in specific cells while the other one is prevented from expression is known as genomic imprinting.
In the given example, the maternal copy of the gene on chromosome 15 is expressed in brain cells while its paternal copy is not expressed in these cells. Hence, the pattern of expression of this gene is regulated through genome imprinting. One of the mechanism is methylation of cytidine residues of CpG islands of the DNA that are more frequently present within promoters of the genes.
When the cytidine residues of these sequences are methylated into 5-methylcytidine, the transcription factors do not bind to these promoters preventing the expression of these genes.
Hence, methylation of cytidine residue in CpG islands of the promoters of the gene present on chromosome 15 could have silenced its expression in brain cells.
Ice actually has a very different structure than liquid water, in that the molecules align themselves in a regular lattice rather than more randomly as in the liquid form. It happens that the lattice arrangement allows water molecules to be more spread out than in a liquid, and, thus, ice is less dense than water.
Answer:
The correct answer is option a. "Double-stranded regions of RNA typically take on an B-form right-handed helix".
Explanation:
Most of the native double-stranded DNA is on an B-form right-handed helix, following the structure proposed by Watson and Crick with about 10–10.5 base pairs per turn. However, double-stranded RNA does not follow this structure, and most regions have an A-form structure. The A-form right-handed helix have slightly more base pairs per turn, which makes it 20-25% shorter than B-DNA.
Fifty/fifty because each makes half of one whole coin.