1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yakvenalex [24]
3 years ago
5

What’s the equation?

Mathematics
2 answers:
algol [13]3 years ago
7 0

Answer:

y=5/6x+8/3

Step-by-step explanation:

juin [17]3 years ago
3 0

Answer:

Step-by-step explanation:

(x1,y1)and (x2,y2)

You might be interested in
32 ft/sec to meters/min
wariber [46]
585.216 would be the answer
3 0
3 years ago
Simplify the following<br> (-3a^2b^6)^2
JulsSmile [24]

Answer:

9a^{4} b^{12}

(or)

9a^4b^12

6 0
3 years ago
The green triangle is a dilation of the red triangle with a scale factor of s=13 and the center of dilation is at the point (4,2
Arada [10]

Given:

Scale factor s=\dfrac{1}{3}

Center of dilation = (4,2)

To find:

The coordinates of the points C' and A.

Solution:

We know that, if a figure is dilated with a scale factor k and the center of dilation is at the point (a,b), then

(x,y)\to (k(x-a)+a,k(y-b)+b)

The scale factor is \dfrac{1}{3} and the center of dilation is at (4,2).

(x,y)\to (\dfrac{1}{3}(x-4)+4,\dfrac{1}{3}(y-2)+2)            ...(i)

Suppose the vertices of red triangle are A(m,n), B(10,14) and C(-2,11).

Using rule (i), we get

C(-2,11)\to C'(\dfrac{1}{3}(-2-4)+4,\dfrac{1}{3}(11-2)+2)

C(-2,11)\to C'(\dfrac{1}{3}(-6)+4,\dfrac{1}{3}(9)+2)

C(-2,11)\to C'(-2+4,3+2)

C(-2,11)\to C'(2,5)

Hence, the coordinates of Point C' are C'(2,5).

Let us assume that point A is A(m,n).

Using rule (i), we get

A(m,n)\to A'(\dfrac{1}{3}(m-4)+4,\dfrac{1}{3}(n-2)+2)

From the given figure it is clear that the image of point A is (8,4).

A'(\dfrac{1}{3}(m-4)+4,\dfrac{1}{3}(n-2)+2)=A'(8,4)

On comparing both sides, we get

\dfrac{1}{3}(m-4)+4=8

\dfrac{1}{3}(m-4)=8-4

(m-4)=3(4)

m=12+4

m=16

And,

\dfrac{1}{3}(n-2)+2=4

\dfrac{1}{3}(n-2)=4-2

(n-2)=3(2)

n=6+2

n=8

Therefore, the coordinates of point A are (16,8).

4 0
3 years ago
I’m in break out rooms and it’s so awkward, and no ones talking. Can someone help me?
Rina8888 [55]

Answer:

why did you delete my answer??????

Step-by-step explanation:

6 0
3 years ago
el perimetro de un terreno rectangular es de 170m y su area es de 170^2hallar la medida de sus lados con ecuacion cuadratica
Blizzard [7]

Answer:

Acá tenemos un sistema de ecuaciones.

El perímetro de un rectángulo es:

2*A + 2*L = 170m

donde A es el ancho y L es el largo.

Y el área del rectángulo es:

A*L = 170m^2.

Entonces, el primer paso es aislar una de las variables en una de las ecuaciones, yo voy a aislar A en la segunda:

A = 170m^2/L.

Ahora reemplazo eso en la primera ecuación y la resuelvo para L.

2*( 170m^2/L.) + 2*L = 170m.

340m^2 + 2*L^2 = 170m*L

ahora tenemos una ecuación cuadrática:

2*L^2 - 170m*L + 340m^2 = 0.

Las soluciones se pueden obtener usando la formula de Bhaskara:

L = \frac{+170 +- \sqrt{170^2 -4*340*2}  }{2*2} = \frac{170 +-161.8}{4}

Entonces las soluciones son:

L = (170 + 161.8)/4 = 82.95m

L = (170 - 161.8)/4 = 4.1m

Entonces, si tomamos L = 82.95m, tenemos A = 4.1 m

y el área es:

A*L = 4.1m*82.95m = 170m^2

3 0
3 years ago
Other questions:
  • Foot ball 35% Basketball 25% Baseball 20% Tennis 20% Use this information the answer the following questions. There are 800 spor
    7·1 answer
  • Which statement proves that the diagonals of square PQRS are perpendicular bisectors of each other?
    6·2 answers
  • Use the line tool to graph the equation on the coordinate plane <br> Y = -x
    8·1 answer
  • What is the answer to this question
    12·2 answers
  • What’s the answer to this problem
    14·1 answer
  • Pls help me with this fraction problem
    15·1 answer
  • PLEASE HELP!!! SHOW YOUR WORK/THE STEPS PLEASE AND TY
    6·1 answer
  • Howard needs to buy pens and pencils for work. Pens cost $0.40 each and pencils cost 50.25 each. He needs to buy at least 340
    15·1 answer
  • Calculate the snow load for the low-slop (flat) roof. For this structure, we will use the following coefficients. Cs = 1.0 Ce =
    6·1 answer
  • Which equation is quadratic in form? 2(x 5)2 8x 5 6 = 0 x6 6x4 8 = 0 7x6 36x3 5 = 0 4x9 20x3 25 = 0
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!