Answer:
(a). The draw-down at a distance 200 m from the well after pumping for 50 hr is 5.383 m.
(b). The draw-down at a distance 200 m from the well after pumping for 50 hr is 6.707 m.
Explanation:
Given that,
Energy 
Transmissivity 
Storage coefficient 
Distance r= 200 m
We need to calculate the draw-down at a distance 200 m from the well after pumping for 50 hr
Using formula of draw-down

Put the value into the formula


We need to calculate the draw-down at a distance 200 m from the well after pumping for 200 hr
Using formula of draw-down

Put the value into the formula


Hence, (a). The draw-down at a distance 200 m from the well after pumping for 50 hr is 5.383 m.
(b). The draw-down at a distance 200 m from the well after pumping for 200 hr is 6.707 m.
given that initial velocity is

deceleration is given as

now we have to find the distance covered in 16 s



so it will cover 137.6 m distance
part b)
in order to find the final speed



so its speed will be 6.2 m/s
Answer:
0.114 kg or 114 g
Explanation:
From the diagram attaches,
Taking the moment about the fulcrum,
sum of clockwise moment = sum of anticlockwise moment.
Wd = W'd'
Where W = weight of the mass, W' = weight of the meter rule, d = distance of the mass from the fulcrum, d' = distance of the meter rule.
make W' the subject of the equation
W' = Wd/d'................ Equation 1
Given: W = mg = 0.0515(9.8) = 0.5047 N, d = (39.2-16) = 23.2 cm, d' = (49.7-39.2) = 10.5 cm
Substitute these values into equation 1
W' = 0.5047(23.2)/10.5
W' = 1.115 N.
But,
m' = W'/g
m' = 1.115/9.8
m' = 0.114 kg
m' = 114 g
<span>they had originally used einsteins therory of relativity and his field equations to figure out their information</span>
Both NPN and PNP transistors consist of a base composed of an N-type material.