Gurlll same I hate physics
We take the derivative of Ohm's law with respect to time: V = IR
Using the product rule:
dV/dt = I(dR/dt) + R(dI/dt)
We are given that voltage is decreasing at 0.03 V/s, resistance is increasing at 0.04 ohm/s, resistance itself is 200 ohms, and current is 0.04 A. Substituting:
-0.03 V/s = (0.04 A)(0.04 ohm/s) + (200 ohms)(dI/dt)
dI/dt = -0.000158 = -1.58 x 10^-4 A/s
Given Information:
slope angle = θ = 30°
spring constant = k = 30 N/m
compressed length = x = 10 cm = 0.10 m
mass of ice cube = m = 63 g = 0.063 kg
Required Information:
distance traveled by ice cube = d = ?
Answer:
distance traveled by ice cube = 0.48 m
Explanation:
Using the the principle of conversation of energy, the following relation holds true for this case,
mgh = 1/2*kx²
h = 1/2*kx²/mg
Where h is the height of the slope, m is the mass of ice cube, k is the spring constant and x is the compressed length o the spring and g is gravitational acceleration.
h = 1/2*kx²/mg
h = 1/2*30(0.1)²/0.063*9.8
h = 0.242 m
From trigonometry ratio,
sinθ = h/d
d = h/sinθ
d = 0.242/sin(30)
d = 0.48 m
Therefore, when the ice cube is released, it will travel a total distance 0.48 up the slope before reversing direction.
Answer:
The mechanical advantage of the system is equal to 19.62
Explanation:
The ratio of the force produced by a machine to the force applied to it is called mechanical advantage. In other words it is the ratio of output force to the input force.
In this problem mass=200kg
applied force=100N
input force=100N
output force=
mechanical advantage 
It gives an idea about the efficiency of a mechanical device. It is indeed a measure of force amplification. In block and tackle system an assembly of ropes and pulleys is used to lift loads. When the moving block is supported by a greater number of rope sections the force amplification will be more.