Let the vector position of the object in the (x-y) plane be

The applied force is

By definition, the applied torque is

Answer:
Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.
Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.
<h3><u>Answer;</u></h3>
Light bounces off of the mirror and then appears to come from behind the mirror.
<h3><u>Explanation;</u></h3>
- <u><em>Plane mirrors form images that are virtual, upright and the same size and shape as the object it is reflecting.</em></u>
- <em><u>When rays of light from the object hits a plane mirror they bounces off the mirror,that is they undergo reflection, and appear to originate from behind the mirror, resulting to the formation of a virtual image.</u></em>
- The image formed appears to be behind the plane in which the mirror lies. A virtual image is an image that is formed at a location from which the rays of light appear to come from. The image can not be formed on a screen.