1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
2 years ago
10

How to do this? I am extremely confused.

Mathematics
2 answers:
DIA [1.3K]2 years ago
7 0

Answer:

13. 3/4 = 75/100 = 75%

14. 1/2 = 50/100 = 50%

15. 17/20 = 85/100 = 85%

16. 13/25 = 42/100 = 42%

Step-by-step explanation:

For this question, you do the opposite of what you did in the other problem. You put the percentage over a denominator of 100. For example,

75 ⇒ 75/100

50 ⇒ 50/100

85 ⇒ 85/100

Then, to find the reduced fraction, you cross-multiply to find the numerator of the fraction.

75 × 4 = 300 / 100 = 3 ⇒ 3/4

50 × 2 = 100 / 100 = 1 ⇒ 1/2

85 × 20 = 1700 / 100 = 17 ⇒ 17/20

To solve #16, please reference back to my explanation from the other question.

Nana76 [90]2 years ago
5 0
Essentially, it seems the teacher wants you to convert fractions to a percentage. For number 13, you would look at the percentage which is 75%, and then try and find an equal fraction (3/4, 75/100). #14: 1/2, 50/100 #15: 17/20, 85/100 #16: 13/25 is equal to 0.52, so that means it would be 52/100 and 52%.
You might be interested in
A bag contains 6 blue marbles, 4 red marbles, and 2 yellow marbles. What is the probability of selecting a blue marble, replacin
sladkih [1.3K]
I think there is a .5 percent chance i added all numbers and divided by 6[the blue marbles]
8 0
3 years ago
Read 2 more answers
There are 9 students in a class: 7 boys and 2 girls.
Crank

Answer: 9/7

Step-by-step explanation:

6 0
3 years ago
Terry Sheehan owns property assessed at $390,000 and pays a property tax rate of 1.69 per hundred dollars of assessed value. He
34kurt

Answer:

$1689

Step-by-step explanation:

Excess of rent amount over annual property tax bill = annual rent - annual property tax

annual property tax =  [(assessed property value / 100) x 1.69]

( $390,000 / 100) x 1.69 = $6591

Annual rent = $690 x 12 = $8280

$8280 - $6591 = $1689

7 0
2 years ago
Compare a perpendicular bisector and an altitude of a triangle
lara31 [8.8K]
Perpendicular bisectors are segment that passes through the mid point of a triangle, while altitude is the perpendicular distance from the base to the opposite vertex.
3 0
3 years ago
Imaginá que tenés 125 dados cúbicos del mismo tamaño ¿Cuantos dados de altura tiene el cubo de mayor tamaño que podés armar apil
kumpel [21]

Answer:

(i) Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

Step-by-step explanation:

(i) Sabemos por la Geometría Euclídea del Espacio que un cubo es un sólido regular con 6 caras cuadradas y longitudes iguales. Cada dado tiene un volumen de 1 dado cúbico y 125 dados dan un volumen total de 125 dados cúbicos.

El volumen de un cubo está dado por la siguiente fórmula:

V = L^{3}

Donde:

L - Longitud de la arista, medida en dados.

V - Volumen del cubo, medido en dados cúbicos.

Ahora, necesitamos despejar la longitud de la arista para calcular la altura máxima posible:

L = \sqrt[3]{V}

Dado que V = 125\,dados^{3}, encontramos que la altura del cubo de mayor tamaño sería:

L =\sqrt[3]{125\,dados^{3}}

L = 5\,dados

Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) El área cuadrada formada por cubos está determinada por la siguiente fórmula:

A = L^{2}

Donde:

L - Longitud de arista, medida en dados.

A - Área, medida en dados cuadrados.

Puesto que la longitud de arista se basa en un conjunto discreto, esto es, el número de dados disponibles, debemos encontrar el valor máximo de L tal que no supere 125 y de un área entera. Es decir:

L \leq 125\,dados

Si cada cubo tiene un área de 1 dado cuadrado, entonces un cuadrado conformado por 125 dados tiene un área total de 125 dados cuadrados. Entonces:

L^{2}< 125\,dados^{2}

Esto nos lleva a decir que:

L < 11.180\,dados

Entonces, la longitud máxima del cuadrado con la mayor cantidad de cubos posible es de 11 dados. El número total requerido de cubos es el cuadrado de esa cifra, es decir:

n = (11\,dados)^{2}

n = 121\,dados

Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

4 0
3 years ago
Other questions:
  • You guys listed "1" fraction of the two fractions between: 3/5 and 4/5? What is the other ones? Also, someone else said these an
    8·1 answer
  • What are the slope and x and y intercept of 3x-6y=18? <br><br><br> please help me
    9·1 answer
  • What an equivalent expression for 48 + 18x
    11·2 answers
  • Find two integers whose sum is 0 and product is -16
    13·1 answer
  • Guys I need help! I am given two chances to get this question right!
    6·1 answer
  • A-3b=4;2a=6b-9 Answer by elimination, please include the entire work on how you got to your answer. According to my math teacher
    12·1 answer
  • If a star is 5,699,999,999,999,999 meters from earth, how long does it take light to travel from earth to the star?
    12·1 answer
  • Find the monthly growth rate as a percentage given this exponential function: f(t)=5,400(1.021)^t​
    7·1 answer
  • Please help me I don't understand on how to put these numbers on the number line
    9·1 answer
  • 8) In square HOPE, mH = 5x. Find the value of x.<br>A. 10<br>B. 18<br>C. 70<br>D. 15
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!