Hello from MrBillDoesMath!
Answer:
x = 1/2 (1 +\- i sqrt(23))
Discussion:
x \3x - 2 = (x/3)*x - 2 = (x^2)/3 - 2 (*)
1 \3x - 4 = (1/3)x - 4 (**)
(*) = (**) =>
(x^2)/3 -2 = (1/3)x - 4 => multiply both sides by 3
x^2 - 6 = x - 12 => subtract x from both sides
x^2 -x -6 = -12 => add 12 to both sides
x^2-x +6 = 0
Using the quadratic formula gives:
x = 1/2 (1 +\- i sqrt(23))
Thank you,
MrB
Answer:
D) 0 = 2(x + 5)(x + 3)
Step-by-step explanation:
Which of the following quadratic equations has no solution?
We have to solve the Quadratic equation for all the options in other to get a positive value as a solution for x.
A) 0 = −2(x − 5)2 + 3
0 = -2(x - 5) × 5
0 = (-2x + 10) × 5
0 = -10x + 50
10x = 50
x = 50/10
x = 5
Option A has a solution of 5
B) 0 = −2(x − 5)(x + 3)
Take each of the factors and equate them to zero
-2 = 0
= 0
x - 5 = 0
x = 5
x + 3 = 0
x = -3
Option B has a solution by one of its factors as a positive value of 5
C) 0 = 2(x − 5)2 + 3
0 = 2(x - 5) × 5
0 = (2x -10) × 5
0 = 10x -50
-10x = -50
x = -50/-10
x = 5
Option C has a solution of 5
D) 0 = 2(x + 5)(x + 3)
Take each of the factors and equate to zero
0 = 2
= 0
x + 5 = 0
x = -5
x + 3 = 0
x = -3
For option D, all the values of x are 0, or negative values of -5 and -3.
Therefore the Quadratic Equation for option D has no solution.
There are apparently a huge number of correct answers ...
the statement of part-a that you've attached has so few
restrictions, requirements, or specifications.
Answer:
452.39 units^2
Step-by-step explanation:
formula: 
If the linear equations form parallel lines or if the answer is not true like 0=8 or 5=18 it means the linear equations have no solutions. If the linear equations form 2 lines that are on top of each other or the answer is true for example 0=0 or 5=5 then the linear equations will have infinitely many solutions. If a linear equation gives you a single answer like x= 7 an y=9 then the linear equation only has one solution