Answer:
<em>The percent error of the cyclist's estimate is 5.63%</em>
Step-by-step explanation:
<u>Percentages</u>
The cyclist estimates he will bike 80 miles this week, but he really bikes 75.5 miles.
The error of his estimate in miles can be calculated as the difference between his estimate and the real outcome:
Error = 80 miles - 75.5 miles = 4.5 miles
To calculate the error as a percent, we divide that quantity by the original estimate and multiply by 100%:
Error% = 4.5 / 80 * 100 = 5.625%
Rounding to the nearest hundredth:
The percent error of the cyclist's estimate is 5.63%
The answer is symmetric because it’s equal
Answer:
Step-by-step explanation:
Well 6 to the second power is when you multiply 6 x 6 = 36
And ab= -320
Answer:
The interval [32.6 cm, 45.8 cm]
Step-by-step explanation:
According with the <em>68–95–99.7 rule for the Normal distribution:</em> If
is the mean of the distribution and s the standard deviation, around 68% of the data must fall in the interval
![\large [\bar x - s, \bar x +s]](https://tex.z-dn.net/?f=%5Clarge%20%5B%5Cbar%20x%20-%20s%2C%20%5Cbar%20x%20%2Bs%5D)
around 95% of the data must fall in the interval
around 99.7% of the data must fall in the interval
![\large [\bar x -3s, \bar x +3s]](https://tex.z-dn.net/?f=%5Clarge%20%5B%5Cbar%20x%20-3s%2C%20%5Cbar%20x%20%2B3s%5D)
So, the range of lengths that covers almost all the data (99.7%) is the interval
[39.2 - 3*2.2, 39.2 + 3*2.2] = [32.6, 45.8]
<em>This means that if we measure the upper arm length of a male over 20 years old in the United States, the probability that the length is between 32.6 cm and 45.8 cm is 99.7%</em>
Answer:
10 percentage is the ans
Step-by-step explanation:
see the pic there is full step